Tag: CWSEI

Situated Learning

[I wrote this review of situated learning, also known as situated cognition, in 2009 for the internal communications discussion board we use in the Carl Wieman Science Education Initiative. I go back to it often enough, mostly to find the reference for the amazing paper by James Paul Gee, that I’m reposting here.]

We’ve all seen it, and probably done it, too. An instructor has a really interesting problem to tackle in a course, a problem that synthesizes many concepts. So the instructor carefully presents each concept, one after another, building anticipation and excitement for the big day when everything comes together. And when the big day arrives, a month into the term, the students don’t seem to get it. “But we just spent a month getting ready for this! Why aren’t you excited? Can’t you remember concepts A, B, C, D, E, F and G?”

Uh, no. The problem is, concepts A thru G were presented without any context. They are disembodied or decontextualized knowledge.  There’s no scaffolding, no motivation to grab the students’ attention. The promise of excitement a month from now isn’t enough. As this is a scenario I’m facing, I needed some research to support my argument for change. At Carl’s suggestions, with great help from Wendy Adams (CU Boulder), I put together a brief summary of what we know about the failures of decontextualized knowledge, or better yet, the profound benefits of situated cognition.

For thousands of years, novices have become experts through apprenticeship: the master trains the novice, not just with reading assignments and homework, but by teaching the craft in situ. The novice accumulates the craft’s concepts as needed. The novice learns simultaneously, both the knowledge and how to use it. As Brown, Collins and Duguid (1989) write,

by ignoring the situated nature of cognition, education defeats its own goal of providing usable, robust knowledge.

This paper is an excellent discussion. The authors describe two benefits to situated cognition:

  1. “Learning from dictionaries, like any method that tries to teach abstract concepts independently of authentic situations, overlooks the way understanding is developed through continued, situated use.” This echoes Chapter 3: Learning and Transfer of How People Learn. Teaching in context (and then in slightly different situations) increases the “flexibility” of students’ knowledge, aiding transfer.
  2. “[Students] need to be exposed to the use of a domain’s conceptual tools in authentic activity – to teachers acting as practitioners and using these tools in wrestling with problems of the world.” This one surprised me because it didn’t even occur to me and it’s probably more important than the first. Students in a situated learning environment get “enculturated” (Brown et al., 1989) into the practice of how to study the field, not just the field’s concepts.

Okay, great. But how do you do it? How do you “enculturate” your students? What kinds of activities or curricula work?

Mayer and Wittrock, in Chapter 13: Problem Solving of the Handbook of Educational Psychology (Winne and Alexander, 2006) describe a wide range of methods for teaching problem solving, many of which have a flavour of teaching and learning in context.

Donovan and Bransford in How Students Learn (2005), a follow-up to How People Learn, collect together a number of case studies about teaching and learning science.

Sabella and Redish (2007) give some advice for physics instruction, but the messages are much more general:

[C]onceptual knowledge is only one part of what students need to know in order to solve physics problems. They also need to know how and when to use that knowledge.

Finally, if you read only one more paper after Brown et al., read this fantastic how-to article by James Paul Gee. He studies literacy and he’s a (the?) video gaming guru. This article, “Learning by Design: good video games as learning machines” (2005) lists 13 principles that education should have. Each principle is matched to a video game where that skill or activity is best exemplified (they’re all long, role-playing games like Halo and Tomb Raider where you must accumulate skills to win). And for us, he kindly translates the principles into what educators need to do to incorporate these principles into our teaching, like

skills are best learned as strategies for carrying out meaningful functions that one wants and needs to carry out.

In conclusion, situated cognition (or situated learning) has benefits far beyond helping students hang concepts onto the scaffold in the right places. It introduces them to how experts in the field practice their craft.

References

J.S. Brown, A. Collins, and P. Duguid, “Situated Cognition and the Culture of Learning,” Educational Researcher 18, 32 (1989).

J.D. Bransford, A.L. Brown, R.R. Cocking (Eds.) How people learn: Brain, mind, experience, and school. (National Academies Press, Washington, DC, 2000).

R.E. Mayer and M.C. Wittrock, in Handbook of Educational Psychology (2nd ed.), edited by P.H. Winne and P.A. Alexander (Mahwah, NJ: Lawrence Erlbaum Associates, 2006), 287.

M.S. Donovan and J.D. Bransford (Eds.) How students learn: Science in the classroom. (National Academies Press, Washington, DC, 2005).

M. Sabella and E.F. Redish, “Knowledge activation and organization in physics problem-solving,” Am. J. Phys. 75, 1017 (2007).

J.P. Gee, “Learning by Design: good video games as learning machines,” E-Learning 2, 5 (2005).

Workshop on Effective Peer Instruction in Biology

I’m really excited to be running another peer instruction workshop with my colleague Cynthia Heiner. This time, we’re tailoring the content of the clicker questions to biology, thanks to the input (and organization) of our CWSEI colleague, Bridgette Clarkston (@funnyfishes on Twitter). I’ll try to get the presentation into Slideshare. In the meantime, I made of poster [PDF] for the the 2012 CWSEI End-of-Year event that illustrates the clicker choreography we recommend.

Effective Peer Instruction in Biology
Using Clickers

Wednesday, May 16, 2012

Presenters Peter Newbury and Cynthia Heiner
CWSEI Science Teaching and Learning Fellows
Time 9:00 – 9:30 am: Coffee and donuts
9:30 am – 12:30 pm: Workshop
12:30 – 1:00 pm: Lunch (provided), chance to mingle and ask questions
Location Biological Sciences Bldg, room 4223 (next to Zoology Main Office)
Workshop This workshop will emphasize best practices for introducing and running peer instruction with clickers. Everyone will have a chance to practice conducting a peer instruction episode, from presenting a question to reacting to the audience’s votes. We’ll talk about whether or not to award clicker marks and point you to resources for learning the technical side of using i>clickers: hardware, software and sync’ing with Vista. We’ll also briefly discuss what makes and effective clicker question and, if time allows, discuss tips for creating effective questions.
Audience This workshop will focus on teaching biology and is open to everyone interested in science education including (but not limited to) faculty, staff, post-docs, graduate students and upper-level undergraduate students.
Please register by Friday, May 11th by contacting Bridgette Clarkston. Please indicate if you’d like to attend the lunch and if you have any dietary restrictions.

Problem solving like a physicist

In my role in the Carl Wieman Science Education Initiative at the University of British Columbia, I am often “embedded” in an instructor’s course, providing resources, assistance and coaching throughout the term. This term, I’m working with an instructor in a final-year, undergraduate electromagnetism (E&M) course.

The instructor has already done the hard part: he recognized that students were not learning from his traditional lectures and committed to transforming his classes from instructor-centered to student-centered.  Earlier, I wrote about how we introduced  pre-reading assignment and in-class reading quizzes.

This course is heavy on the math. Not new math techniques but instead, math the students have learned in the previous 3 or 4 years applied to new situations. His vision, which he shared with the students on the first day, was to introduce some key concepts and then let them “do the heavy lifting.” And by heavy lifting, he means the algebra.

The vector for this heavy lifting is daily, in-class worksheets. The students work collaboratively on a sequence of questions, typically for 15-20 minutes, bookended by  mini-lectures that summarize the results and introduce the next concept.

We’re making great strides, really. After some prompting by me, the instructor is getting quite good at “conducting” the class. There are no longer moments when the students look at each other thinking, “Uh, what are supposed to be doing right now? This worksheet?” It’s fine to be puzzled by the physics, that’s kind of the point, but we don’t want students wasting any of their precious cognitive load on divining what they should be doing.

With this choreography running smoothy and the students participating, we’re now able to look carefully at the content of the worksheets. Yes, I know, that’s something you should be planning from Day 1 but let’s face it, if the students don’t know when or how to do a worksheet, the best content in the World won’t help them learn. Last week’s worksheet showed we’ve got some work to do.

(Confused guy from the interwebz. I added the E&M canaries.)

The instructor handed out the worksheet. Students huddled in pairs for a minute or two and them slumped back into their seats. You know those cartoons where someone gets smacked on the head and you see a ring of stars or canaries flying over them? You could almost see them, except the canaries were the library of equations the students are carrying in their heads. They’d grasp at a formula floating by, jam it onto the page, massage it for a minute or two, praying something would happen if they pushed the symbols in the right directions. Is it working? What if I write it like….solve for….Damn. Grab another formula out of the air and try again…

After 10 minutes, some students had answered the problem. Many others were still grasping at canaries. The instructor presented his solution on the document camera so he could “summarize the results and introduce the next concept.” The very first symbols at the top-left of his solution were exactly the correct relationship needed to solve this problem, magically plucked from his vast experience. With that relationship, and a clear picture of where the solution lay, he got there in a few lines. The problem was trivial. No surprise, the students didn’t react with “Oh, so that’s why physics concept A is related to physics concept B! I always wondered about that!” Instead, they responded with, “Oh, so that’s how you do it,” and snapped some pix of the screen with their phones.

Scaffolding and Spoon-feeding

We want the worksheets to push the students a bit. A sequence of questions and problems in their grasp or just beyond, that guide them to the important result or concept of the day. Here’s what doesn’t work: A piece of paper with a nasty problem at the top and a big, blank space beneath. I’ve seen it, often enough. Students scan the question. The best students dig in. The good and not-so-good students scratch their heads. And then bang their heads until they’re seeing canaries.

There are (at least) 2 ways to solve the problem of students not knowing how to tackle the problem.  One is to scaffold the problem, presenting a sequence of steps which activate, one by one, the concepts and skills needed to solve the nasty problem. The Lecture Tutorials used in many gen-ed “Astro 101” astronomy classes, and the Washington Tutorials upon which they’re modeled, do a masterful job of this scaffolding.

Another way, which looks the same on the surface, is to break the nasty problem into a sequence of steps. “First, find the relationship between A and B. Then, calculate B for the given value of A. Next, substitute A and B into C and solve for C in terms of A…” That’s a sequence of smaller problems that will lead to a solution of the nasty problem. But it’s not scaffolding: it’s spoon-feeding and it teaches none of the problem-solving skills we want the students to practice.  I’ve heard from number of upper-level instructors declare they don’t want to baby the students. “By this stage in their undergraduate studies,” the instructors say, “physics students needs to know how to tackle a problem from scratch.”

This is the dilemma I’m facing. How do we scaffold without spoon-feeding? How do we get them solving nasty problems like a physicist without laying a nice, thick trail of bread crumbs?

Fortunately, I have smart colleagues. Colleagues who immediately understood my problem and knew a solution: Don’t scaffold the nasty problem, scaffold the problem-solving strategy. For a start, they say, get the instructor to model how an expert physicist might solve a problem. Instead of slapping down an elegant solution on the document cam, suppose the instructor answers like this:

  1. Determine what the problem is asking. Alright, let’s see. What is this problem about? There’s A and B and their relationship to C. We’re asked to determine D in a particular situation.
  2. Identify relevant physics.  A, B, C and D? That sounds like a problem about concept X.
  3. Build a physics model. Identify relevant mathematical relationships. Recognize assumptions, specific cases. Select the mathematical formula that will begin to solve the problem.
  4. Execute the math. Carry out the algebra and other manipulations and calculations.
    (This is where the instructor has been starting his presentation of the solutions.)
  5. Sense-makingSure, we ended up with an expression or a number. Does it make sense? How does it compare the known cases when A=0 and B goes to infinity? How does the order of magnitude of the answer compare to other scenarios? In other words, a few quick tests which will tell us our solution is incorrect.

Wouldn’t it be great if every student followed a sequence of expert-like steps to solve every problem? Let’s teach them the strategy, then, by posing each nasty problem as a sequence of 5 steps. “Yeah,” my colleagues say, “that didn’t work. The students jumped to step 4, push some symbols around and when a miracle occurred, they went back and filled in steps 1, 2, 3 and 5.” Students didn’t buy into the 5-step problem-solving scheme when it was forced upon them.

So instead, for now, I’m going to ask the instructor to model this approach, or his own expert problem-solving strategy, when he presents his solutions to the worksheet problems. When the students see him stop and think and ponder, they should realize this is an important part of problem-solving. The first thing you do isn’t scribbling down some symbols. It’s sitting back and thinking. Maybe even debating with your peers. Perhaps you have some insight you can teach to your friend. Peer instruct, that is.

 

Navigation