Tag: CWSEI

Preparing for our peer instruction workshop

It’s Sunday morning. On Tuesday, I’ll be running an all-morning-and-maybe-into-the-afternoon workshop in my department, Physics and Astronomy, at UBC. My science education colleagues and I, all part of the Carl Wieman Science Education Initiative, are working hard to be proactive, rather than reactive, when it comes to transforming the way we (that is, my teaching colleagues, faculty, university, WTH go for it, post-secondary educators) teach science.

The workshop I’m running with my colleague Cynthia Heiner (@cynheiner on Twitter) is about effective peer instruction. Er, think-pair-share. No, clickers. Or…

That’s the first thing I thought carefully about before putting this workshop together (originally for the CWSEI end-of-year conference last April): the title.

This learner-centered instructional technique of posing a multiple-choice question, getting students to individually choose an answer and then pairing up to discuss with each other why they made those choices, most of the world calls it think-pair-share (TPS). Eric Mazur branded it, or at least popularized it, as peer-instruction (PI). My university, like many others, runs these episodes using clickers. So, what to call this workshop? I made a choice and have diligently stuck with it:

Effective Peer Instruction using Clickers

i>clicker classroom response system

My colleagues are calling this a “clicker workshop” but I don’t want to give it that label. You see, about half of 20 people who have registered are grad students. I’m thrilled! One way to transform science education is to train the next generation of instructors. And when they head off into the rest of the world after graduation, some will get academic jobs that include teaching. And some won’t have clickers: they’ll be forced to use – gasp! – colored voting cards.

Many instructors use these coloured ABCD cards instead of clickers.

Like a lot of instructors do. Successfully. I don’t want these eager new faculty members to ever think, “Oh, I can do clickers but you guys don’t have them, so I guess I’ll just lecture.” So, this workshop is about effective peer instruction. Sure, it’s customized to using i>clickers to collect and assess the students votes, but the goal of the workshop is how to “choreograph” an episode of peer instruction so it maximizes student participation, engagement and learning.

To be honest, I’m pretty confident about content of the workshop. I’ve spent a lot of time with, and talking to, Ed Prather and his team from the Center for Astronomy Education at the University of Arizona. And I consider myself fortunate to have regular conversations, 140 characters at a time, with @derekbruff, @RogerFreedman, @RobertTalbert, @jossives, @Patrick_M_Len, @etacar11, @astrocarrie and other tweeps using peer instruction and other learner-centered instructional strategies.

If there’s one aspect of the workshop, and peer instruction, that I don’t feel I have a good handle on, it’s clicker points. With i>clickers, the system records who voted, not just how many chose A, B, C, D or E, so it is simple to reward clicks with points that contribute to each student’s marks. There are lots of options: a point for any click, a point for picking the right answer, both, points only if there is a second vote, no points,… It’s an over-constrained problem with too many competing and complementary factors:

  • students will participate if they get marks
  • unless they perceive the marks are simply for attendance
  • giving too many (any?) marks for right answers inhibits students from listening to their own ideas, relying instead on their supposedly “smarter” neighbours
  • if students engage and contribute to the class, shouldn’t they be rewarded?
  • effective peer instruction promotes learning and success on exams – isn’t that reward enough?
  • what about the voting card people? They can’t give points but they’re successful.
  • Or are they? Everyone in the field is well-aware of “card fade”, the drop in participation throughout the term as students (and the instructor?) loose their enthusiasm for voting.
  • a million other reasons and arguments…

Yeah, I’m struggling. But I took a big step towards clarity last week because of a post by my friend @jossives, “So long clicker participation points“, and a comment by @brianwfrank

I think, for an instructor who is new to running discussions among and with students in lecture, it’s pretty much fine to use points for “clicking”, espceially as a safety net….Ultimately, I think the direction an instructor should likely head is away from points for clicking

I really like that, and it’s the approach I’m going to promote at the workshop. What Brian says echoes my conversation with Ed Prather last week when he said, roughly, if you’re really worried about your policy for handing out clicker marks, you’ve already missed the boat. You have to convince your students that peer instruction promotes learning and success, and keep reminding them, and then “walk the walk” by putting nearly-identical assessments on their homework and exams. Ed, never one to mince words, concluded, “If you’re unwilling to do that, then you can worry about points.” I added, “unwilling, or unable…” Ed can get full participation of his 800 (yes, eight zero zero) student astronomy classes because he has incredible “presence” in the room. Some instructors, especially new ones, struggle with keeping their students focused. Throw in a new teaching technique that the new instructor is still learning, and you can’t blame the students for disengaging. So, clicker points to reward their effort for a few terms, until you are so confident with peer instruction, you don’t need that “safety net.”

There’s one last component of the workshop that I’m nervous about: getting the participants to authentically participate

  • veteran clicker users: I don’t want them to just fall back into their usual routine. I want them to genuinely try new things, like not opening the clicker poll until the students are prepared or, and this one has had the biggest backlash already, turning to the screen and modeling how to answer the questions, perhaps by “acting out” some of the concepts.

    Theatre of Dionysus (by nrares on flickr CC)
  • newcomers: effective peer instruction choreography take some “performance”. You’ve got to put yourself out there and lead the episode. I have to create an environment where the grad students don’t feel like they’re making fools of themselves in front of the faculty.

This will take some gentle yet firm cajoling at the beginning of the workshop. To the veterans, I think I’ll ask them to model our choreography for the benefit of the others, especially the newcomers, so they can get a clear experience of the workshop.

Alright, T-45 hours until the workshop. Tomorrow will be full of last minute details and working out the choreography of our choreography workshop with my co-presenter, Cynthia. Those of you following me on twitter at @polarisdotca will be the first to hear how it went. The rest of you, 1) why aren’t you on twitter? and 2) you’ll have to wait for a follow-up post.

How should I share materials?

[Update (9 September 2011): Finally stopped procrastin–, er, planning and did it. Follow the “Astro Labs” link at the top of the page. I’m continually adding new activities so check back periodically. Or watch for announcements on my twitter feed, @polarisdotca .]

The goal of the Carl Wieman Science Education Initiative (CWSEI) is to improve undergraduate science education. The chosen method for doing that is based on 3 “pillars”:

In my position as a CWSEI Science and Teaching Learning Fellow in the Department of Physics and Astronomy, I get to spend time working on each of these pillars. Sometimes,  I flit from pillar to pillar to pillar in a single sitting, like when I’m making up a nice think-pair-share clicker question. Other times, I can spend an hour, a day, a month working on one pillar. For instance, I spent the good part of a summer working with our introductory astronomy (“Astro 101”) instructors on a set of learning goals, statements directed at the students like

[By the end of this course, you will be able to] use the geometry of the Earth, Moon and Sun to illustrate the phases of the Moon and predict the Moon’s rise and set times.

For the last couple of terms, I’ve been working closely with the Astro 101 instructors on instructional approaches to help them become more effective instructors.

But it’s hard to be an effective instructor if you don’t have good materials to work with. (No, I’m not saying good materials make you a good instructor — I’m a math grad, I know all that necessary and/or sufficient stuff.)  So I have spent considerable time in the last few years creating activities for our Astro 101 labs. These aren’t traditional, 3-hour labs. Rather, they’re 1-hour, hands-on activities run in groups of less than 40 students. Following our American friends, we call them “tutorials” even though the rest of UBC uses “tutorial” for that hour you spend with a teaching assistant going over problems on the board.

Once we’d drafted the set of learning goals for Astro 101, we selected the learning goals that would be best tackled with a hands-on activity. The Moon phases goal mentioned above, for example. Or “describe experiments or observations that would detect if space is flat, has positive or negative curvature.” Then I set about creating the activity, cycling from CWSEI pillar to pillar.

It got pretty hectic, at times. We have some large classes with the students split into 5 or 6 tutorial sections each week. I’d get the activity ready and create a set of worksheets that we’d use in the Monday section. Then I’d sit in as the teaching assistants led the activity, observing the students, talking to them about how they answered the questions and talking to the teaching assistants about what worked and what didn’t. That afternoon (or night!) I’d make some changes and try version 2 on Tuesday. And repeat. Throughout the week. And then assess on the final exam. Eventually, we ended up with some, quite frankly, excellent activities. The most “mature” activities consist of

  • worksheets to guide the students through the activity
  • question sheet to assess their knowledge at the end of the activity
  • equipment
  • detailed guide for the teaching assistants, including how to set up the equipment, how to facilitate the activity, suggestions for prompts and Socratic-style questions to guide the students, solutions to the assessment
  • in some cases, materials for adapting the activity for use in the classroom
  • exam questions that assess the selected learning goal(s)

It’s taken several years to get here. And it’s time to visit the fourth CWSEI pillar:

disseminate what works

Yes, it’s time to share the activities. A couple of them are already out there, like the human orrery activity [with video] or a concept-mapping activity that will appear in the proceedings of Cosmos in the Classroom 2010. But what about the rest? How do I share them with the community of astronomy educators which includes, I believe

  • post-secondary Astro 101 instructors
  • teaching assistants
  • lab instructors
  • K-12 teachers
  • museum/science center presenters sharing astronomy with school children and the general public
  • astronomy education researchers

I feel there are 2 major decisions to make:

1. Are they free?

I’ve got a pretty good relationship with a certain textbook publisher and I could certainly talk to them about finding a way to bundle the activities up into a workbook. But honestly, I don’t want to go that route. The CWSEI and my Department have been paying me to create these materials – and in some sense, they’re already paid for. In the spirit of standing on the shoulders of giants, I’d like to make them available to anyone who wants them. Does it mean anything if I add ” © 2011 Peter Newbury” in the footer. Or is that “© 2011 UBC”? No, the intellectual property policies at UBC are pretty clear it belongs to me:

Copyright and other intellectual property rights to scholarly and literary works—including books, lecture notes, laboratory manuals [my emphasis], artifacts, visual art and music—produced by those connected with the University belong to the individuals involved.

Or maybe I tag them with a Creative Commons license to use, adapt but give credit where credit is due.

2. What format?

Full disclosure, right here, right now: These materials are written in LaTeX and I will not, I repeat not, Not, NOT re-write them in MS-frickin-Word. One more auto-format because apparently I’m stupid and it knows what I want and I’m going to tear out my hard-drive. And sorry, I don’t know iPages or whatever that Apple iProgram is iCalled.  Plus, I get such a geek thrill out turning this

%%%%%%%%%%%%%%%%%%%%
% Jupiter orbit
%%%%%%%%%%%%%%%%%%%%
pscircle(0,0){5.2}
parametricplot[plotpoints=721,linestyle=dashed]{0}{360}{%
t cos 5.2 mul t 9 mul cos 1.5 mul add
t sin 5.2 mul t 9 mul sin 1.5 mul add}

into this [update 7 June 2011: here’s the full .tex file]

Jupiter's spirograph orbit comes from one line of sweet, LaTeX PSTricks code.

So here’s what I’m thinking: for each activity, I’ll make available the .tex files, .eps figures, other graphics and PDFs which are ready-to-use but can’t (easily) be edited. I could add a new page to this WP blog and distribute them there.

What would work for you?

Like the heading asks, what would work for you? Something I suggested above? Or maybe something entirely different? Please leave a comment if you have any thoughts, suggestions, recommendations, requests,…

CWSEI End of Year Conference

Every April, at the end of the “school year” at UBC, the Carl Wieman Science Education Initiative (CWSEI) holds a 1-day mini-conference to highlight the past years successes. This year, Acting-Director Sarah Gilbert did a great job organizing the event. (Director CW, himself, is on leave to the White House.) It  attracted a wide range of people, from UBC admin to department heads, interested and involved faculty, Science Teaching and Learning Fellows (STLFs) like myself and grad students interested in science education. The only people not there, I think, were the undergraduate students, themselves. Given that the event was held on the first day after exams finished and the beginning of 4 months of freedom, I’m not surprised at all there weren’t any undergrads. I know I wouldn’t have gone to something like this, back when I was an undergrad.

Part 1: Overview and Case Studies

The day started with an introduction and overview by Sarah, followed by 4 short “case studies” where 4 faculty members who are heavily involved in transforming their courses shared their stories.

Georg Rieger talked about how adding one more activity to his Physics 101 classes made a huge difference. He’s been using peer instruction with i>Clickers for a while and noticed poor student success on the summative questions he asked after explaining a new concept. He realized students don’t understand a concept just because he told them about it, no matter how eloquent or enthusiastic he was. So he tried something new — he replaced his description with worksheets that guided the students through the concept. It didn’t take a whole lot longer for the students to complete the worksheets compared to listening to him but they had much greater success on the summative clicker questions. The students, he concluded, learn the concepts much better when they engage and generate the knowledge themselves. Nice.

Susan Allen talked about the lessons she learned in a large, 3rd-year oceanography class and how she could apply them in a small, 4th-year class. Gary Bradfield showed us a whole bunch of student-learning data he and my colleague Malin Hansen have collected in an ecology class (Malin’s summer job is to figure out what it all means.) Finally, Mark MacLean described his approach to working with the dozen or so instructors teaching an introductory Math course, only 3 of whom had any prior teaching experience. His breakthrough was writing “fresh sheets” (he made the analogy to a chef’s specials of the week) for the instructors that outlined the coming week’s learning goals, instructional materials, tips for teaching that content, and resources (including all the applicable questions in the textbook.) The instructors give the students the same fresh sheet, minus the instructional tips. [Note: these presentations will appear on the CWSEI shortly and I’ll link to them.]

Part 2: Posters

All of my STLF colleagues and I were encouraged to hang a poster about a project we’d been working on. Some faculty and grad students who had stories to share about science education also put up posters.

My poster was a timeline for a particular class in the introductory #astro101 course I work on. The concept being covered was the switch from the Ptolemaic (Earth-centered) Solar System to the Copernican (Sun-centered) Solar System. The instructor presented the Ptolemaic model, described how it worked, asked the students for to make a prediction based on the model (a prediction that does not match the observations, hence the need to change models.) The students didn’t get it. But he forged onto the Copernican model, explained how it worked, asked them to make a prediction (which is consistent with the observations, now). They didn’t get that either. About a minute after the class ended, the instructor looked at me and said, “Well that didn’t work, did it?” I suggested we take a Muligan, a CTRL-ALT-DEL, and do it again the next class. Only different this time. That was Monday. On Tuesday, we recreated the content switching from an instructor-centered lecture to a student-centered sequence of clicker questions and worksheets.  On Wednesday, we ran the “new” class. It took the same amount of time and the student success on the same prediction questions was off the chart! (Yes, they were the same questions. Yes, they could have remembered the answers. But I don’t think a change from 51% correct on Monday to 97% on Wednesday can be attributed entirely to memory.)

Perhaps the most interesting part of the poster, for me, was coming up with the title. The potential parallel between Earth/Sun-centered and instructor/student-centered caught my attention (h/t to @snowandscience for making the connection.) With the help of my tweeps, wrestled with the analogy, finally coming to a couple of conclusions. One, the instructor-centered class is like the Sun-centered Solar System (with the instructor as the Sun):

  • the instructor (Sun) sits front and center in complete control while “illuminating” the students (planets), especially the ones close by.
  • the planets have no influence on the Sun,…
  • very little interaction with each other,…
  • and no ability to move in different directions.

As I wrote on the poster, “the Copernican Revolution was  a triumph for science but not for science education.” I really couldn’t come up with a Solar System model for a student-centered classroom, where students are guided but have “agency” (thanks, Sandy), that is, the free-will, to choose to move (and explore) in their own directions. In the end, I came up with (yes, it’s a mouthful but someone stopped me later to compliment me specifically on the title)

Shifting to a Copernican model of the Solar System
by shifting away from a Copernican model of teaching

Part 3: Example class

When we were organizing the event, Sarah thought it would be interesting to get an actual instructor to present an actual “transformed” class, one that could highlight for the audience (especially the on-the-fence-about-not-lecturing instructors) what you can do in a student-centered classroom. I volunteered the astronomy instructor I was working with, and he agreed. So Harvey (and I) recreated a lecture he gave about blackbody radiation. I’d kept a log of what happened in class so we didn’t have to do much. In fact, the goal was to make it as authentic as possible. The class, both the original and the demo class, had a short pre-reading, peer instruction with clickers (h/t to Adrian at CTLT for loaning us a class set of clickers), the blackbody curves Lecture-Tutorial worksheet from Prather et al. (2008), and a demo with a pre-demo prediction question.

Totally rocked, both times. Both audiences were engaged, clicked their clickers, had active discussions with peers, did NOT get all the questions and prediction correct.

At the CWSEI event, we followed the demonstration with a long, question-and-answer “autopsy” of the class. Lots of great questions (and answers) from the full spectrum of audience members between novice and experienced instructors. Also some helpful questions (and answers) from Carl, who surprised us by coming back to Vancouver for the event.

To top it off, we made the class even more authentic by handing out a few Canadian Space Agency stickers to audience members who ask good questions, jus

Canadian Space Agency (CSA) or Agence spatiale canadienne (ASC) logo

t like we do in the real #astro101 class. You should have seen the glee in their eyes. And the “demo” students went all metacognitive on us (as they did in the real class, eventually) and started telling Harvey and I who asked sticker-worthy questions!

Part 4: Peer instruction workshop

The last event of the day was a pair of workshops. One was about creating worksheets for use in class. The other, which I lead, was called “Effective Peer Instruction Using Clickers.” (I initially suggested, “Clicking it up to Level 2” but we soon switched to the better title.)  The goal was to help clicker-using instructors to take better advantage of peer instruction. So many times I’ve witnessed teachable moments lost because of poor clicker “choreography,” that is, conversations cut-off, or not even started, because of how the instructor presents the question or handles the votes, and other things. Oh, and crappy questions to start with.

I didn’t want this to be about clickers because there are certainly ways to do peer instruction without clickers. And I didn’t want it to be a technical presentation about how to hook an i>clicker receiver to your computer and how to use igrader to assign points.

Between attending Center of Astronomy Education peer instruction workshops myself, which follow the “situated apprentice” model described by Prather and Brissenden (2008), my conversations with @derekbruff and the #clicker community, and my own experience using and mentoring the use of clickers at UBC, I easily had enough material to fill a 90-minute workshop. My physics colleague @cynheiner did colour-commentary (“Watch how Peter presents the question. Did he read it out loud?…”) while I did a few model peer instruction episodes.

After these demonstrations, we carefully went through the choreography I was following, explaining the pros and cons. There was lots of great discussion about variations. Then the workshop turned to how to handle some common voting scenarios. Here’s one slide from the deck (that will be linked shortly.)

I’d planned on getting the workshop participants to get into small groups, create a question and then present it to the class. If we’d had another 30 minutes, we could have pulled that off. Between starting late (previous session went long) and it being late on a Friday afternoon, we cut off the workshop. Left them hanging, wanting to come back for Part II. Yeah, that’s what we were thinking…

End-of-Year Events

Sure, it’s hard work putting together a poster. And demo lecture. And workshop. But it was a very good for the sharing what the CWSEI is doing, especially the demo class. And I’ll be using the peer instruction workshop again. And it was a great way to celebrate a year’s work. And then move onto the next one.

Does your group hold an event like this? What do you find works?

Navigation