ASTR 310 Tutorial 3: Sunrise and Sunset

The Sun, stars and planets cross our sky in complicated patterns that depend on the Earth's daily rotation around its tilted axis and its annual revolution of the Earth around the Sun.

For thousands of years, astronomers have watched the sky, figured out the patterns and built "computers" like these so they could predict when and where the Sun, stars and planets rise and set each day.

In this tutorial, you'll use your 21st Century computer to explore the motion of the Sun.

1. Open your browser to astro.unl.edu
2. On the NAAP Labs tab, select Labs - Motions of the Sun.
3. Click the "Paths of the Sun Simulator" link to launch the sim.

Part 1: The Path of the Sun Simulator

Explore the sim with your partners and answer these questions:
An object's altitude tells you how high an object is in the sky, from 0° on the horizon to 90° at your zenith. What is the altitude of the Sun at 12:00 noon on Canada Day (July 1), as seen by observers in Vancouver (latitude $49.0^{\circ} \mathrm{N}$)?

Challenge question: An object's azimuth tells you its direction, like on a compass, from angle 0° (due North) to 90° (due East) to 180° (due South) to 270° (due West) and back to 360° or 0° at North again. How many degrees North of East is the most northerly sunrise for observers in Vancouver?

Part 2: The Path of the Sun Across the Sky

If you were able to answer both those questions, you've probably figured out how to

- drag the Sun
- grab and move the sphere
- find the time
- set the time
- set the latitude
- set the date
- measure the altitude
- measure the azimuth
- animate the daily motion
- what the white, gray, yellow and blue circles are

If you haven't figured these out yet, don't worry. Watch your TA use the simulation to collect data tracking the path of today's Sun. Record the data in the Table:

		Today	Autumnal Equinox Sep 22
Time of sunrise (time when the Sun is at altitude 0°)		Winter Solstice Dec 22	
Sun's location on horizon at sunrise, in degrees North or South from East (azimuth 90°)			
Sun's highest altitude of the day, in degrees above Southern horizon			
Time of sunset (time when the Sun is at altitude 0°)			
Sun's location on horizon at sunset, in degrees North or South from West (azimuth 270°)			
Draw the Sun's path on diagram. Label path with date, time of sunrise, time of sunset.			

Part 2: The Path of the Sun Across the Sky

If you were able to answer both those questions, you've probably figured out how to

- drag the Sun
- grab and move the sphere
- set the time
- find the time
- set the latitude
- set the date
- measure the altitude
- measure the azimuth
- animate the daily motion
- what the white, gray, yellow and blue circles are

If you haven't figured these out yet, don't worry. Watch your TA use the simulation to collect data tracking the path of today's Sun. Record the data in the Table:

		Today	Vernal Equinox Mar 20
Time of sunrise (time when the Sun is at altitude 0°)		Summer Solstice Jun 22	
Sun's location on horizon at sunrise, in degrees North or South from East (azimuth 90°)			
Sun's highest altitude of the day, in degrees above Southern horizon			
Time of sunset (time when the Sun is at altitude 0°)			
Sun's location on horizon at sunset, in degrees North or South from West (azimuth 270°)			
Draw the Sun's path on diagram. Label path with date, time of sunrise, time of sunset.			

Name \qquad ID No. \qquad Tutorial Day/Time \qquad

Part 3: Questions Please hand in this worksheet when you are finished.

1. Use the sunrise and sunset times you collected and from your sky diagram to find the length of the day (the number of hours the Sun is up) throughout the year. Put the values on this graph and draw a smooth curve between them. Be sure to include today, too.

2. Shade in the region of the graph in Question 1 that represents the hours of darkness when the Sun is down. What fraction of the graph did you shade in? Answer: \qquad
3. Change the latitude to $90^{\circ} \mathrm{N}$ so the sim shows the motion of the Sun for observers at the North Pole.

When does the Sun rise today? \qquad
When does the Sun rise on Jun 20? \qquad
When does the Sun rise at the North Pole? \qquad
4. There's something wrong with the equinoxes. In class, we say the Sun rises at 6:00 a.m. and sets at 6:00 p.m. but that's not what you found. Set the simulation for Vancouver again. Write the observations you made earlier and add another observation: the time when the Sun crosses the meridian (at azimuth 180°.) This is what we usually call "noon."

Date	sunrise	noon	sunset
Vernal Equinox			
Autumnal Equinox			

On the Vernal Equinox, the day is \qquad hours long but it's shifted \qquad
On the Autumnal Equinox \qquad

This unexpected shift will be explained in upcoming classes about Kepler's Laws and the analemma.
Path of the Sun simulator: astro.unl.edu/naap/motion3/animations/sunmotions.html

