Tag: active learning

Anatomy of a 400-seat Active Learning Classroom

(This is adapted from a poster I presented at the 2018 Society for Teaching and Learning in Higher Education (STLHE) Conference, Université de Sherbrooke, June 20-22, 2018.)

(Photo courtesy of Ashlyne O’Neil. Thanks @ashlyneivy!)

Designing a Large, Active Classroom

As class size increases, instructors face an increasingly difficult challenge. There is clear evidence that more students are more successful in classes with active learning.[1] Yet the work required to facilitate active learning – logistics, providing feedback, supporting and interacting with individual students – increases with class size. And despite the importance of the design of learning spaces,[2] large classrooms often impede student-student and student-instructor interactions.

At UBC’s Okanagan campus, I was invited to advise the architects and campus planners on the design a new 400-seat classroom.

Design Principle:
Eliminate everything that hinders
student-student collaboration and
student-instructor interaction.

My poster uses a giant 6-page “book” (you can see it drooping slightly in the center of the poster in the picture above) to highlight different features and characteristics of the design:

Student flow: Main entrances to the classroom are at the middle of the room. Students flow in and downhill toward the front. Sitting at the back takes deliberate effort. Students can discretely enter and exit without disrupting the class or the instructor.
Main entrances to the classroom are at the middle of the room. Students flow in and downhill toward the front. Sitting at the back takes deliberate effort. Students can discretely enter and exit without disrupting the class or the instructor.
Accessible seating: Fully 20% of seating – roughly 90 locations – are accessible to students using wheelchairs. They can sit in groups with their peers at prime locations, instead of being isolated or confined to designated seats.
Fully 20% of seating – roughly 90 locations – are accessible to students using wheelchairs. They can sit in groups with their peers at prime locations, instead of being isolated or confined to designated seats.
Network of aisles: A network of aisles throughout the classroom allows instructors and teaching assistants to get face-to-face or within arm’s reach of every student. Wireless presentation system allows instructors to teach from any location and project any student’s device.
A network of aisles throughout the classroom allows instructors and teaching assistants to get face-to-face or within arm’s reach of every student. Wireless presentation system allows instructors to teach from any location and project any student’s device.
Group work with whiteboards: Students on narrower front desks swivel around to work with their peers on wider desks. With 150 whiteboards scattered throughout the room, groups can be collaborating within seconds of their instructor saying, “Grab a whiteboard and…”
Students on narrower front desks swivel around to work with their peers on wider desks. With 150 whiteboards scattered throughout the room, groups can be collaborating within seconds of their instructor saying, Grab a whiteboard and…
Lighting: Separate front, middle, back lights create smaller classrooms for 250 and 100 students.
Separate front, middle, back lights create smaller classrooms for 250 and 100 students.
Prep room: Prep room is accessible from outside the classroom so instructors can prepare before and after class. Includes sink, glassware drying rack, storage cabinets, lockable flammable solvent cabinet, fume hood, chemical resistant countertops, first aid kit, demo cart.
Prep room is accessible from outside the classroom so instructors can prepare before and after class. Includes sink, glassware drying rack, storage cabinets, lockable flammable solvent cabinet, fume hood, chemical resistant countertops, first aid kit, demo cart.

Design Features Promote Collaboration and Interaction

Design Features Promote Collaboration and Interaction

  • The classroom is gently tiered so students farther back can see the front. There are 2 desks on each tier. The front desk is wide enough to hold a notebook and laptop. The rear desk is nearly twice as wide, allowing the front student to swivel around and work with their peers in the rear desk.
  • Swivel chairs on wheels allow students to easily move and work with others around them.
  • The front desk on each tier has a modesty screen. There are deliberately NOT modesty screens on the rear desks, allowing students on the front desk to swivel around to the rear desk without smashing their knees or having to sit awkwardly.
  • There are power outlets for every student under the desktop, leaving the work surface unbroken and smooth for notebooks, laptops, and whiteboards.
  • When the instructor or teaching assistant stands in the aisle in front of the front desk, they can speak face-to-face with the 1st row of students, and are within arm’s reach of the 2nd row. From the aisle on the back of this set of four rows of desks, the instructor or teaching assistant is face-to-face with students in the 4th row and within arm’s reach of the 3rd row.

Optimizing Visibility of the Screen

A slightly curved screen at the front of the classroom is large enough to display two standard inputs. A third projector can display a single image across the screen. The screen is about 7 or 8 feet above the floor, so the instructor at the front does not cast a shadow on the screen or look directly into the projectors (housed in a 2nd floor projection room at the back of the classroom.) The size and curvature of the screen ensure all but the very front-left and front-right seats have views of the screen within UBC’s guidelines.

Does the Design Enhance Learning?

We are studying the impact of the design by comparing data collected before and after course instructors teach their courses in the 400-seat classroom, including

  • distributions of final grades and grades on in-class activities like peer instruction (“clicker”) questions and group work sheet
  • drop, fail, withdrawal (DFW) rates
  • locations of the course instructor and teaching assistants at 2-minute intervals throughout the class period
  • what the instructor is doing (lecturing, writing, posing questions,…)  and what the students are doing (listening, discussing peer instruction questions, asking questions,…) using  the Classroom Observation Protocol for Undergraduate STEM (COPUS)3,4
COPUS captures what the instructor and what the students are doing during the class. There is a clear difference here between a traditional, lecture-based course and a course that uses active learning. (Graphic by CWSEI CC BY NC)

Acknowledgements

My thanks to Dora Anderson, Heather Berringer, Deborah Buszard, Rob Einarson, W. Stephen McNeil, Carol Phillips, Jodi Scott, and Todd Zimmerman for the opportunity to help design to this learning space.

Blueprint and visualizations by Moriyama & Teshima Architects. Used with permission.

References

1 Freeman, S., Eddy, S. L., McDonough, M., Smith, M. K., Okoroafor, N., Jordt, H., & Wenderoth, M. P. (2014). Active learning increases student performance in science, engineering, and mathematics. Proceedings of the National Academy of Sciences, 111(23), 8410-8415. doi.org/10.1073/pnas.1319030111
2 Beichner, R., Saul, J., Abbott, D., Morse, J., Deardorff, D., Allain, R., … & Risley, J. (2007). The Student-Centered Activities for Large Enrollment Undergraduate Programs (SCALE-UP) project, a peer reviewed chapter of Research-Based Reform of University Physics. College Park, MD: Am Assoc of Physics Teachers.
3 Stains, M., Harshman, J., Barker, M. K., Chasteen, S. V., Cole, R., DeChenne-Peters, S. E., … & Levis-Fitzgerald, M. (2018). Anatomy of STEM teaching in North American universities. Science, 359(6383), 1468-1470. doi.org/10.1126/science.aap8892
4 Smith, M. K., Jones, F. H., Gilbert, S. L., & Wieman, C. E. (2013). The Classroom Observation Protocol for Undergraduate STEM (COPUS): a new instrument to characterize university STEM classroom practices. CBE-Life Sciences Education, 12(4), 618-627. doi.org/10.1187/cbe.13-08-0154

My first conference

No, no, not the first conference I attended. The first conference I’ve organized. I’m really enjoying the opportunity (try to) do all the things I’ve said about conferences that started with, “If this was my conference, I’d…”

Engaging Every Learner

That’s the theme for the 2017 UBC Okanagan Learning Conference, May 3-4, 2017. To quote the conference website (which I can cuz I wrote it):

The 13th annual learning conference explores how we can design, assess, and facilitate learning that engages every learner, allowing each student to build their own knowledge and contribute their own strengths to their learning and the learning of their classmates and instructors.

Here are some of the features and events I’ve decided on, very often with input from my more experienced colleagues:

Theme: Engaging Every Learner
The conference theme has been cycling through pedagogy, student experience, and education research. It was time for a pedagogy theme again so I picked something I think will have lots of entry points: the whole backward design process, diversity of students, critical pedagogy, #edtech. I’m still wondering if this theme is too wide? too narrow? Will people have things to propose for sessions? Is it interesting enough that people will attend? All the questions. We’ll see in 3 months, I guess.
Names and name tags
I’m ensuring name fields on the proposal form and registration form that ask people how they want their name to appear in the program and on their name tag. Which can be different than the name on the paper or poster. And I’m giving people space to write special instructions about their names in case there are accents or special characters that a typical web browser form doesn’t recognize. (Thanks, Aimée Morrison @digiwonk for telling me how much she hates having to draw in the accent on her name tag. Every. Single. Time.)

Yes, this means there may be name tags that have to be created “by hand” rather than pouring the registration database into the labeling program. That will take time for my organizing committee colleagues. But how can I advocate for engaging every learner if I can’t afford the effort to get each conference attendee’s name correct?

Twitter handles on name tags
I’m tired of writing my twitter handle @polarisdotca and crappily drawing a Twitter bird on my name tag. Every. Single. Time. So the registration form asks people to give their Twitter handle if they want it to appear on their name tag. Yes, it means creating some name tags with the Twitter stuff and some without. Again, how can I not ensure each learner is welcome and supported?
Keynote speaker: Sarah Eddy
SarahLEddy_headshot_sq
Dr. Sarah L. Eddy, Florida International University

The landmark 2014 active learning meta-analysis by Freeman et al. provides, once and for all, the evidence that effective active learning helps students learn. (Aatish Bhatia wrote an excellent summary.) I know the analysis comes from the science, technology, engineering, and math (STEM) disciplines because that’s where the data exist, not because that’s the only place active learning exists successfully. Sarah is one of the “et al.” on the Freeman paper and her “Getting under the hood” paper with Kelly Hogan is one of my favorites. Their paper shows that the structure instructors provide, in the design and delivery of the course, is critical. It’s not about content knowledge (“chemistry”). It’s not even about pedagogical content knowledge (“how people learn chemistry”). It’s about teaching and learning. And that’s why I’m so thrilled Sarah agreed to give the conference keynote, “End of Lecture?  Active learning increases student achievement.” Yeah, and I got to ask her!

Minimize TTWWADIs
This is the 13th annual conference and my colleagues here at UBCO have running this conference down to a fine art. Need this done? Here. Need that done? Yep, no problem. It’s so smooth, sometimes people don’t notice what just happened. I’ve got fresh eyes, though, and I’m forcing myself (and my patient and generous colleagues) to critique “That’s The Way We’ve Always Done It.” I’m looking forward to sharing some new practices and events with the campus and conference attendees. Like

  • a Programming Committee to review and select proposals
  • a poster session
  • wine and cheese reception at the end of the first day, in the same time and place as the poster session
  • charging a conference fee
  • conference hashtag #everylearner17
Students and the Conference Registration Fee
I was having trouble thinking something through so, like I often do, I turned to my personal learning network on Twitter:

So many helpful responses:

Stay tuned: I’ll fill in what I chose to do…

I hope this list will grow over the next 3 months as I encounter more things that matter to me and make the choices and decisions entrusted to me.

Got any tips and things to watch out for? Comment away!

Navigation