Category: clickers

Is going over the answers negative reinforcement?

My wife works with people with developmental delays, like autism and fetal alcohol spectrum disorder. Her niche is sexual health.  Imagine the hormones of a teenaged boy with the impulse-control of a 5-year-old. She often gets called in when some Grade 6’er starts whippin’ it out – either for the reaction he gets or because he doesn’t realize that’s not what typical Grade 6ers do.

The other day, we were talking about how to change people’s behaviours and she gave me an example of positive, no wait, negative, erm, reinforcement. I’m out of my depth when it comes to psychology so let me remind me (and you) about the difference, in overly-simplified terms I can get my head around. Oh, and when I’ve mentioned I’m writing this post, everyone I’ve spoken to gives a different definition of negative reinforcement, so it’s possible the one below is different than yours…

Positive reinforcement is something that’s added, typically by the person in authority – a parent, teacher, boss – after a person does something good. Like a high-5 by the coach after a good play, for example. That action strengthens the person’s motivation to repeat the behaviour.

Negative reinforcement strengths the unwanted behaviour. Your kid is having a fit because she doesn’t want to clean her room. Suppose you say, “Okay, I understand you don’t want to do it. Why don’t you watch TV for half an hour, calm down, and then clean your room….” It reinforces the undesired behaviour.

Every source I googled made sure to point out negative reinforcement is not the same as punishment. Getting grounded because you haven’t cleaned your room is not negative reinforcement.

(Geez, this is subtle. I can imagine some amazing clicker questions about positive reinforcement, negative reinforcement and punishment. [Update March 19, 2012: A couple of days after I wrote this post, Derek Bruff wrote about a clicker workshop he gave, including some pos/neg reinforcement clicker questions created by one of the participants.]  Okay, back to the conversation with my wife.)

Scene 1: Grade 6 classroom

There’s this boy, let’s call him John. John like to strip his clothes off at school. Like in the middle of class. His teacher intervenes. Frustrated with John’s continual stripping, the school decides they have no choice but to send John home when he strips, punishing him for his behaviour. But here’s the thing – John might have a developmental delay but he knows what’s what: he doesn’t like school. He strips so he can get sent home. In fact, John has started stripping on the school bus on the way to school so he doesn’t even have to go through the charade of going to class. Sending John home, which the staff feel is punishment for his behaviour, is, in fact, a reward for John. What they think is punishment is, in fact, negative reinforcement for John.

“So what are they supposed to do?” I asked her.

They shouldn’t send John home. And they shouldn’t praise him for keeping his clothes on. Instead, throughout the days when John is at school, the teachers should say, “We’re so glad you’re here with us today, John!” That’s positive reinforcement, something added to John’s school day that strengthens the good behaviour of keeping his clothes on.

What I’ve left out is what to do during the difficult transition time between he continually rips off his clothes and when he keeps them on. The teacher needs to intervene somehow. Calling my wife is a good start!

Scene 2: University physics lecture hall

The physics instructor has realized that his traditional, “all lecture, all the time” style of teaching does not promote learning like he wants.  He’s decided to make the class more student-centered. He gives 10-15 minute mini-lectures and then hands out worksheets which are supposed to guide and scaffold the students through the next stage of the development of the concept. The problem is, the students don’t do the worksheets. They just sit there, staring at the empty spaces on the page or desperately scribbling down formulas like I described here, biding their time, because they know he’ll be going over the answers in a few minutes. Sure enough, after a while, he goes over the answer to Question 1. The students madly scribble down his solution or, increasingly, grab their phones and start snapping pictures.

He’s not punishing them for not doing the worksheets (“Why have you not answered the questions!? You will all Remain. In. This. Classroom. Until I see some work!”) Rather, he’s reinforcing their behaviour of not doing the worksheet. They get what they want (the answers) and he thinks he’s helping. This seems to be an example of negative reinforcement, at least according to the definition I posited earlier.

“So what is he supposed to do?”

Good question.

Let’s look at this top down: What do the students need to get out of the activity? They need feedback on their answers in a timely manner. “Timely” because feedback a month later when they fail the exam is too late. One way to give them feedback is to go over the answers so they can check. That’s not the model used by the significant portion of the astronomy education community who use the Lecture Tutorials worksheets. Instructors do not go over the answers. Instead, the worksheets have built-in feedback and most instructors follow the worksheets with a sequence of peer instruction questions. If you get those questions correct, you know you’re okay on the worksheet. If you don’t get the questions correct, your peers will straighten you out. At the very least, you’ll know which concepts you didn’t get and can talk to the prof or TAs about them. More positive reinforcement comes when you ace those identical or “identical except some parameters changed” questions on the exam.

I’d love to create a sequence of clicker questions to follow the worksheets in this physics class but that’s not the simplest alternative because it requires the instructor to be agile with worksheets AND with peer instruction. One thing at a time…

What about this? The instructor watches the students doing the worksheet questions, monitoring their progress. If everyone is getting along just fine, don’t stop them. When it looks like students are stuck, and individual attention by the instructor or TA can’t handle the widespread confusion, intervene with a class-wide discussion. Don’t begin with, “I’m so happy you answered Questions 1 and 2 by yourselves!” (“John, I’m so glad you kept your pants on today!”) Instead, work together to get past the sticking point. Get the students to contribute to the solution, using the work they’ve already done to chip away at the problem. A pat on the back or a high-5 for a good tidbit of problem solving. The students are praised and rewarded for the work they’ve done, even if it’s not complete. That’s positive reinforcement for good behaviour, right?

(Unless that’s an example of “intermittent” negative reinforcement which, according to my wife, is even stronger than continuous.)

Yes, there will be difficult transition period, when students are not solving the problems and the instructor is not going over all the answers. Sorry, tough it out.

What if the students were never allowed to get into the habit of not doing the questions? What if, from Worksheet 1 on Day 1, this collaborative solution approach was the way it’s done. Ahh, now that would be something, wouldn’t it?

Alright, I’m not exactly sure where I’m at. I know the current method of going over the answers isn’t working. And that if we make changes, there will be a difficult period of transition. I like the collaborative problem solving approach — I’ve seen it happen in a physics class of about 30, where the agile instructor knew everyone’s name and kept track (in his head) of who hadn’t contributed yet, calling on them for input.

One other thing I know:  I should learn some more psychology.

Image: RaaksBeton2 by Dan Kamminga on flickr CC. In my mind, it shows people working together to reinforce what they’re building.

My brief encounter with iclicker2 ranking tasks

As I’ve mentioned before, the folks at i>clicker lent me a set of the new i>clicker2 clickers. I had a chance to try them out this week when I filled in for an “Astro 101” instructor. I sure learned a lot in that 50 minutes!

(image: Peter Newbury)

Just to refresh your memory, the i>clicker2 (or “ic2” as it’s also called, which is great because the “>” in “i>clicker2” is messing up some of my HTML) unit has the usual A, B, C, D, E buttons for submitting answers to multiple-choice questions. These new clickers (and receiver and software) also allow for numeric answers and alphanumeric answers. That last feature is particularly interesting because it allows instructors to ask ranking or chronological questions. In the old days, like last week, you could display 5 objects, scenarios or events and ask the student to rank them. But you have to adapt the answers because you have only 5 choices. Something like this:

Rank these [somethings] I, II, III, IV and V from [one end] to [the other]:

A) I, II, V, III, IV
B) II, I, IV, III, IV
C) IV, III, IV, I, II
D) III, I, II, IV, V
E) V, II, I, III, IV

These are killer questions for the students. What are they supposed to do? Work out the ranking on the side and then check that their ranking is in your list? What if their ranking isn’t there? Or game the question and work through each of the choices you give and say “yes” or “no”? There is so much needed to get the answer right besides understanding the concept.

That’s what’s so great about the ic2 alphanumeric mode. I asked this question about how the objects in our Galaxy appear to be moving relative to us:

The alphanumeric mode of the ic2 allows instructors to easily ask ranking tasks like this one about the rotation of the Galaxy.

(Allow me a brief astronomy lesson. At this point in writing this post, I think it’ll be important later. Oh well, can’t hurt, right?)

The stars in our Galaxy orbit around the center. The Galaxy isn’t solid, though. Each star moves along its own path, at its own speed. At this point in the term [psst! we’re setting this up so the students will appreciate what the observed, flat rotation curve means: dark matter] there is a clear pattern: the farther the star is from the center of the Galaxy, the slower its orbital speed. That means stars closer to the center than us are moving faster and will “pass us on the inside lane.” When we observe them, they’re moving away from us. Similarly, we’re moving faster than objects farther from the center than we are, so we’re catching up to the ones ahead of us. Before we pass them, we observe them getting closer to us. That means the answer to my ranking question is EDCAB. Notice that location C is the same distance from the center of the Galaxy as us so it’s moving at the same speed as us. Therefore, we’re not moving towards or away from C — it’s the location where we cross from approaching (blueshifted) to receeding (redshifted).

As usual, I displayed the question, gave the students time to think, and then opened the poll. Students submit a 5-character word like “ABCDE”. The ic2 receiver cycles through the top 3 answers so the instructor can see what the students are thinking without revealing the results to the students.

I saw that there was one popular answer with a couple of other, so I decided enough students got the question right that -pair-share wouldn’t be necessary and displayed the results:

Students' answers for the galaxy rotation ranking task. The first bar, EDCAB, is correct. But what do the others tell you about the students' grasp of the concept?

In hindsight, I think I jumped the gun on that because, and here’s what I’ve been trying to get to in this post, I was unprepared to analyze the results of the poll. I did think far enough ahead to write down the correct answer, EDCAB, in big letters on my lesson plan. But what do the other answers tell us the students’ grasp of the concept?

In a good, multiple-choice question, you know why each correct choice is correct (yes, there can be more one correct choice) and why each incorrect choice is incorrect. When a student selects an incorrect choice, you can diagnose which part of the concept they’ve missed. The agile instructor can get students to -pair-share to reveal, and hopefully correct, their misunderstanding.

I’m sure that agility is possible with ranking tasks. But I hadn’t anticipated it. So I did the best I could on the fly and said something like,

Good, many of you recognized that the objects farther from the center are moving slower, so we’re moving toward them. And away from the stars closer to the center than us.

[It was at this moment I realized I had no idea what the other answers meant!]

Uh, I notice almost everyone put location C at the middle of the list – good. It’s at the same distance and same speed as us, so we’re not moving away from or towards C.

Oh, and ABCDE? You must have ranked them in the opposite order, not the way I clumsily suggested in the question. [Which, you might notice, is not true. Oops.]

[And the other 15% who entered something else? Sorry, folks…]

Uh, okay then, let’s move on…

What am I getting at here? First, these ranking tasks are awesome. Every answer is valid. None of that “I hope my answer is on the list…” And there’s no short-circuiting the answer by giving the students 5 choices, risking them gaming the answer by working backwards. I know there are lots of Astro 101 instructors already using ranking tasks, probably because of the great collection of tasks available at the University of Nebraska-Lincoln, but using them in class typically means distributing worksheets, possibly collecting them, perhaps asking one of those “old-fashioned” ranking task clicker questions. All that hassle is gone with ic2.

But it’s going to take re-training on the part of the instructor to be prepared for the results. In principle, there are 5! = 120 different 5-character words the students can enter. Now, of course, you don’t have anticipate what each of the 119 incorrect answers mean. But here are my recommendations:

  1. Work out the ranking order ahead of time and write it down, in big letters, where you can see it. It might be easy to remember, “the right answer to this question is choice B” but it’s not easy to remember, “the correct ranking is EDCAB.”
  2. Work out the ranking if the students rank in the opposite order. That could be because they misread the question or the question wasn’t clear.  Or it could diagnose their misunderstanding. For example, if I’d asked them to rank the locations from “most-redshifted” to “most-blueshifted”, the opposite order could mean they’re mixing up red- and blue-shift.
  3. Think about the common mistakes students make on this question and work out the rankings. And write those down, along with the corresponding mistakes.
  4. Nothing like hindsight: set up the question so the answer isn’t just 1 swap away from ABCDE. If you had no idea what the answer was, wouldn’t you enter ABCDE?

I hope to try, and write about, some other types of questions with my collection of ic2 clickers. I’ve already tried a demo where students enter their predictions using the numeric mode. But that’s the subject for another post…

Do you use ranking tasks in your class, with ic2 or paper or something else, again? What advice can you offer that will help the instructor be more prepared and agile?

Effective professional development, Take 1

The other day, I participated in a webinar run by Stephanie Chasteen (@sciencegeekgirl on Twitter. If you don’t follow her, you should.) It was called, “Teaching faculty about effective clicker use” and the goals was to help us plan and carry out meetings where we train faculty members to use peer instruction and clickers. Did you get that subtle difference: it was not about how to use clickers (though Stephanie can teach you that, too.) Rather, this webinar was aimed at instructional support people tasked with training their colleagues how to use peer instruction. This was a train the trainers webinar. And it was right up my alley because I’m learning to do that.

And if you think that’s getting meta-, just you wait…

In the midst of reminding us about peer instruction, Stephanie listed characteristics of effective professional development. She gave us the bold words; the interpretation in mine:

  • collaborative: it’s about sharing knowledge, experiences, ideas, expertise
  • active: we need to do something, not just sit and listen (or not!)
  • discipline-oriented: If we want to be able to share, we need some common background. I want to understand what you’re talking about. And I hope you give a damn about what I’m talking about. Coming from the same discipline, like physics or astronomy or biology, is a good start.
  • instructor-driven: I take this to mean “facilitated”. That is, there’s someone in charge who drives the activity forward.
  • respectful: So open to interpretation. Here’s my take: everyone in the room should have the opportunity to contribute. And not via the approach, “well if you’ve got something to say, speak up, dammit!” It takes self-confidence and familiarity and…Okay, it takes guts to interrupt a colleague or a conversation to interject your own opinion. Relying on people to do that does not respect their expertise or the time they’ve invested by coming to the meeting.
  • research-based: One of the pillars of the Carl Wieman Science Education Initiative (CWSEI) that I’m part of at UBC, and the Science Education Initiative at the University of Colorado where Stephanie comes from, is a commitment to research-based instructional strategies. We care about the science of teaching and learning.
  • sustained over time: We’d never expect our students to learn concepts after one exposure to new material. That’s why we give pre-reading and lectures and peer instruction and homework and midterms and…So we shouldn’t expect instructors to transform their teaching styles after one session of training. It requires review and feedback and follow-up workshops and…

Alright, time to switch to another stream for a moment. They’ll cross in a paragraph or two.

(image: Peter Newbury)

I’ve got a big box of shiny new i>clicker2 clickers to try out. I’m pretty excited. I’m also pretty sure the first thing instructors will say is, “What’s with all the new buttons? I thought these things were supposed to be simple! Damn technology being shoved down our [grumble] [grumble] [grumble]” I want to be able reply

Yes, there are more buttons on the i>clicker2. But let me show you an amazing clicker question you can use in your [insert discipline here] classroom…

 

Good plan. Okay, let’s see: Clickers? Check. Amazing clicker questions? D’oh!

We use a lot of peer instruction here at UBC and there are CWSEI support people like me in Math, Chemistry, Biology, Statistics, Earth and Ocean Sciences, Computer Science. If anyone can brainstorm a few good questions, it’s this crew. And guess what? We get together for 90-minute meetings every week.

Can you feel the streams are coming together. Just one more to add:

My CWSEI colleagues and I frequently meet with instructors and other faculty members. We’re dance a delicate dance between telling instructors what to do, drawing out their good and bad experiences, getting them to discover for themselves what could work, (psst: making them think they thought of it themselves). Their time is valuable so when we meet, we need to get things done. We need to run short, effective episodes of professional development. It’s not easy. If only there was a way to practice…

A-ha! Our weekly meetings should be effective professional development led by one of us getting some practice at facilitating. The streams have crossed. I’ll run the next meeting following Stephanie’s advice, modeling Stephanie’s advice, to gather questions so I will be able run an effective workshop on taking advantage of the new features of the i>clicker2. It’s a meta-meeting. Or a meta-meta-meeting?

It’s not like I made any of this up. Or I couldn’t find it if I talked with some people whose job is professional development. Well, I guess I did kind of talk with Stephanie. But there’s a lot to be said for figuring it out for yourself. Or at least starting to figure it out for yourself, and failing, and then recognizing and appreciating what the expert has to say.

And you’ve read enough for now. Watch for another post about how it went.

Navigation