Category: astro 101

Why should I use peer instruction in my class?

Image: "Lecture Hall," uniinnsbruck, Flickr (CC)

[Update (June 16): Lead author Zdeslav Hrepic pointed me to a follow-up book chapter [PDF] where he and the study co-authors describe using tablet-PCs to counter the problems uncovered in their study. Thanks, Z.]

I’m sure we’ve all heard it from skeptical instructors: Why should I use peer instruction in my class? In response, we often cite Hake’s 6000-student study or the new UBC study by my colleagues Louis, Ellen and Carl. These are still pretty abstract, though: If you use interactive, learner-centered instruction, you can expect your students to better grasp of the concepts.

“Sure, but why?” the instructors ask. “Why does it work?”

I just read a paper that can help answer that question. I ran across it while following a discussion about the Khan Academy videos and whether or not they are good tools for learning. This paper by Hrepic, Zollman and Rebello (2007) asks students in an introductory physics course and physics experts (with M.Sc’s and Ph.D’s) to watch a 15 minute video of a renowned physics educator presenting a topic in physics.

The researchers do a series of pre- and post-tests and interviews with the students and experts to compare their understanding of the concepts covered (or not) in the video. There were some significant differences. A couple that stick in my head. (1) students recalled learning about concepts that were not presented in the video. (2) Only students who knew the correct answers on the pre-test were able to infer the concepts from the video (that is, the questions were not explicitly answered in the video.) The students who did not know the concept before were unable to make the inferences. Like I said, there are significant differences between what the instructor thinks a lecture covers and what the students think is covered.

The paper nicely gives us some suggestions to counter this problem.

And my thoughts about how to use peer instruction to do that.

Making inferences: Experts make more inferences than students. And only students who already know the concepts can infer them from the lecture. Therefore, instructors need to be cautious about relying on students to fill in the blanks.

Some of the best peer instruction questions are the conceptual questions where the answer is not simple recall. No traxoline here, please. Questions that rely on students making inferences are excellent for promoting discussion because it’s likely students will interpret the question differently, make different assumptions and come to different conclusions. <soapbox> All the more reason that students need to first answer clicker questions on their own so they’re prepared to share their inferences. </soapbox>

Prior knowledge: Students’ prior knowledge influences what they perceive and can “distort” their recollection of what the lecturer says. Therefore, it’s essential that the instructor has some idea of what the students already know (particularly their misconceptions) before presenting new material.

A few, introductory clicker questions will reveal the students’ prior knowledge. Sure, maybe these are simple recall questions that won’t generate a lot of discussion. But the students’ responses will inform the agile instructor who can tailor the instruction.

Continuous feedback about students’ understanding: The trail the instructor blazes through the concepts and the path the students follow often diverge during a lecture. The instructor should be continuously gathering and reacting to feedback from the students about their understanding so the instructor can shepherd the students back on track.

Observant instructors can gather critical feedback from the discussions that occur during peer instruction or the students answers on in-class worksheets like the Lecture-Tutorials popular in introductory “Astro 101” classes and other hybrids of the Washington Tutorials. Rather than waiting weeks until after the midterm or final exam to find out students totally missed Concept X, the instructor can discover it within minutes of introducing the topic. Minutes, not weeks! The agile instructor can immediately revisit the difficult concepts. Immediately, not weeks later or never!

I’m much more confident I can answer the skeptical instructor now. “Why should I use clickers in my classroom?” Because they give the students and you to ability to assess the current level of understanding of the concepts. Current, right now, before it’s too late and the house of cards you’re so carefully building come crashing down.

How should I share materials?

[Update (9 September 2011): Finally stopped procrastin–, er, planning and did it. Follow the “Astro Labs” link at the top of the page. I’m continually adding new activities so check back periodically. Or watch for announcements on my twitter feed, @polarisdotca .]

The goal of the Carl Wieman Science Education Initiative (CWSEI) is to improve undergraduate science education. The chosen method for doing that is based on 3 “pillars”:

In my position as a CWSEI Science and Teaching Learning Fellow in the Department of Physics and Astronomy, I get to spend time working on each of these pillars. Sometimes,  I flit from pillar to pillar to pillar in a single sitting, like when I’m making up a nice think-pair-share clicker question. Other times, I can spend an hour, a day, a month working on one pillar. For instance, I spent the good part of a summer working with our introductory astronomy (“Astro 101”) instructors on a set of learning goals, statements directed at the students like

[By the end of this course, you will be able to] use the geometry of the Earth, Moon and Sun to illustrate the phases of the Moon and predict the Moon’s rise and set times.

For the last couple of terms, I’ve been working closely with the Astro 101 instructors on instructional approaches to help them become more effective instructors.

But it’s hard to be an effective instructor if you don’t have good materials to work with. (No, I’m not saying good materials make you a good instructor — I’m a math grad, I know all that necessary and/or sufficient stuff.)  So I have spent considerable time in the last few years creating activities for our Astro 101 labs. These aren’t traditional, 3-hour labs. Rather, they’re 1-hour, hands-on activities run in groups of less than 40 students. Following our American friends, we call them “tutorials” even though the rest of UBC uses “tutorial” for that hour you spend with a teaching assistant going over problems on the board.

Once we’d drafted the set of learning goals for Astro 101, we selected the learning goals that would be best tackled with a hands-on activity. The Moon phases goal mentioned above, for example. Or “describe experiments or observations that would detect if space is flat, has positive or negative curvature.” Then I set about creating the activity, cycling from CWSEI pillar to pillar.

It got pretty hectic, at times. We have some large classes with the students split into 5 or 6 tutorial sections each week. I’d get the activity ready and create a set of worksheets that we’d use in the Monday section. Then I’d sit in as the teaching assistants led the activity, observing the students, talking to them about how they answered the questions and talking to the teaching assistants about what worked and what didn’t. That afternoon (or night!) I’d make some changes and try version 2 on Tuesday. And repeat. Throughout the week. And then assess on the final exam. Eventually, we ended up with some, quite frankly, excellent activities. The most “mature” activities consist of

  • worksheets to guide the students through the activity
  • question sheet to assess their knowledge at the end of the activity
  • equipment
  • detailed guide for the teaching assistants, including how to set up the equipment, how to facilitate the activity, suggestions for prompts and Socratic-style questions to guide the students, solutions to the assessment
  • in some cases, materials for adapting the activity for use in the classroom
  • exam questions that assess the selected learning goal(s)

It’s taken several years to get here. And it’s time to visit the fourth CWSEI pillar:

disseminate what works

Yes, it’s time to share the activities. A couple of them are already out there, like the human orrery activity [with video] or a concept-mapping activity that will appear in the proceedings of Cosmos in the Classroom 2010. But what about the rest? How do I share them with the community of astronomy educators which includes, I believe

  • post-secondary Astro 101 instructors
  • teaching assistants
  • lab instructors
  • K-12 teachers
  • museum/science center presenters sharing astronomy with school children and the general public
  • astronomy education researchers

I feel there are 2 major decisions to make:

1. Are they free?

I’ve got a pretty good relationship with a certain textbook publisher and I could certainly talk to them about finding a way to bundle the activities up into a workbook. But honestly, I don’t want to go that route. The CWSEI and my Department have been paying me to create these materials – and in some sense, they’re already paid for. In the spirit of standing on the shoulders of giants, I’d like to make them available to anyone who wants them. Does it mean anything if I add ” © 2011 Peter Newbury” in the footer. Or is that “© 2011 UBC”? No, the intellectual property policies at UBC are pretty clear it belongs to me:

Copyright and other intellectual property rights to scholarly and literary works—including books, lecture notes, laboratory manuals [my emphasis], artifacts, visual art and music—produced by those connected with the University belong to the individuals involved.

Or maybe I tag them with a Creative Commons license to use, adapt but give credit where credit is due.

2. What format?

Full disclosure, right here, right now: These materials are written in LaTeX and I will not, I repeat not, Not, NOT re-write them in MS-frickin-Word. One more auto-format because apparently I’m stupid and it knows what I want and I’m going to tear out my hard-drive. And sorry, I don’t know iPages or whatever that Apple iProgram is iCalled.  Plus, I get such a geek thrill out turning this

%%%%%%%%%%%%%%%%%%%%
% Jupiter orbit
%%%%%%%%%%%%%%%%%%%%
pscircle(0,0){5.2}
parametricplot[plotpoints=721,linestyle=dashed]{0}{360}{%
t cos 5.2 mul t 9 mul cos 1.5 mul add
t sin 5.2 mul t 9 mul sin 1.5 mul add}

into this [update 7 June 2011: here’s the full .tex file]

Jupiter's spirograph orbit comes from one line of sweet, LaTeX PSTricks code.

So here’s what I’m thinking: for each activity, I’ll make available the .tex files, .eps figures, other graphics and PDFs which are ready-to-use but can’t (easily) be edited. I could add a new page to this WP blog and distribute them there.

What would work for you?

Like the heading asks, what would work for you? Something I suggested above? Or maybe something entirely different? Please leave a comment if you have any thoughts, suggestions, recommendations, requests,…

An astronomy education retreat

Last year, Tim and Stephanie Slater phoned me up and invited me to be part of an astronomy education research group they were putting together. I was flattered to be part of the Conceptual Astronomy and Physics Education Research (CAPER) team! Especially when I learned who else I’d be working with. I mean, check out the bio’s of these remarkable astronomy educators. I’ve got to admit, I was a bit overwhelmed by their experience (and publication records.)

We got together at a conference we all attended and meet via telecon regularly but this week was special. A group of us — Tim, Stephanie, Julia, Sharon, Kendra, Inge, Eric and I — got together in Colorado for an intensive, 3-day astronomy education research retreat.

Wow.

We talked about this. We argued about that. We thought about this and that. And it was all about teaching and learning astronomy. Not marking or Little League or home renovations or all those other things that eat up our time. Just astronomy education. What a treat!

By the end of the 3 days, we’d developed a research project, from concept tests and interview protocols to IRB letters and pre/post testing schedules. And what’s it all about?

Understanding certain concepts in introductory astronomy, like the causes of the seasons and the phases of the Moon, requires students to visualize the Earth, Moon and Sun, from both Earth-centered and Sun-centered points-of-view. It seems likely, then, that students with better spatial reasoning abilities will be more successful. There are already  standard tests of spatial reasoning. And there are a number of assessments of astronomy knowledge, augmented by the one’s we created this week. Add some pre-/post-testing and a dash of correlation coefficient and see what comes out.

One of the concepts we want to explore is the motion of the sky, so we made up an assessment using this diagram.  (I’m using this example because *I* created this diagram with Powerpoint and a little help from Star Walk.)

Looking south at sunset. So many questions we can ask...

Like I said earlier, I was pretty overwhelmed by the calibre of the other people in the group. So it was very gratifying, good for my ego, to be able to contribute and realize that we all have strengths. Maybe that’s the humble Canadian coming through.  I’m excited about what we’ve done and what we’ll be doing. And proud I have knowledge and experience to share.

I can’t wait to see what we find. Stay tuned!

Navigation