What does open communication mean to you?

I’m struggling with an issue. I can’t decide, or maybe I’m afraid to admit, if I’m being naive. Or perhaps so inexperienced, I’m blinded by imposter syndrome, the feeling that you really don’t belong in the group of experts you find yourself in. I’m hoping that by the time I get to the end of this post, I’ll at least have a better understanding of my confusion.

In a few months, there will be a Gordon Research Conference (GRC)  that I’d like to go to. It’s called Astronomy’s Discoveries and Physics Education. The theme is finding ways to use the latest discoveries in astronomy (and astronomy education, knowing the invited speakers) to motivate and enhance undergraduate physics education.

I haven’t been to that many conferences – maybe a dozen over my academic career, often by the same organizations. With my limited experience, there are 2 aspects of the GRC that are new to me.

1. Attendance by application and selection

You have to apply and then be accepted to attend. Not the usual,  accepted to present a paper or hang a poster, but accepted to be there. Kind of like TED talks, I hear. I guess that ensures that the people attending are motivated to be there and, more importantly, are sufficiently knowledgeable about the subject that they can make meaningful contributions to the conference.

2. All communication is treated as private.

This is the one that’s got me confused. By accepting the invitation to attend the GRC, you agree to their “Disclaiming Statements” which, because you can’t link directly to them, I’ll reproduce here:

To encourage open communication, each member of a Conference agrees that any information presented at a Gordon Research Conference or Gordon Research Seminar, whether in a formal talk, poster session, or discussion, is a private communication from the individual making the contribution and is presented with the restriction that such information is not for public use. Prior to quoting or publishing any such information presented at a Conference in any publication, written or electronic, written approval of the contributing member must first be obtained. The audio or video recording of lectures by any means, the photography of slide or poster material, and printed or electronic quotes from papers, presentations and discussion at a Conference without written consent of the contributing member is prohibited. Scientific publications are not to be prepared as emanating from the Conferences. Authors are requested to omit references to the Conferences in any publication, written or electronic. These restrictions apply to each member of a Conference and are intended to cover social networks, blogs, tweets or any other publication, distribution, communication or sharing of information presented or discussed at the Conference. Guests are not permitted to attend the Conference lectures and discussion sessions. Each member of a Conference acknowledges and agrees to these restrictions when registration is accepted and as a condition of being permitted to attend a Conference. Although Gordon Research Conference staff will take reasonable steps to enforce the restrictions against recording and photographing Conference presentations, each member of a Conference assumes sole responsibility for the protection and preservation of any intellectual property rights in such member’s contributions to a Conference.

(Source: follow the Disclaiming Statements link on the right-side menu here.)

Buried in the middle of this statement is a restriction on communicating any information from the conference via “social networks, blogs, tweets or any other publication, distribution, communication or sharing of information.”

In other words, I will not be able to tweet from this conference. And that’s got me, well, disturbed.

It’s not that I’ll have to disconnect my iPhone from my hand and won’t be able to follow what @RealSomeFamousPerson had for #theirmeal. Fine, whatever. I can catch up with my followers and those I follow on Twitter each morning at breakfast or evening at the pub.

Rather, it’s that as I’ve attend more conference and benefited from people I follow who share their conference experiences, I’ve learned of 2 remarkable ways that Twitter enhances my conference experience and my professional development:

  1. Twitter creates a forum for people at the conference to share ideas and reactions to the speakers. This “back channel” connects people around the room and in different parallel sessions.
  2. Twitter invites the outside community, the people not at the conference, to be a part of what’s happening there. In fact, and this is the heart of my confusion with the GRC policy, I benefit so much from following colleagues who tweet and blog their conference experiences, I feel an obligation to share the inspiration, ideas and resources that I am privileged to gather in person.

I posed this dilemma on Twitter and received replies from John Burk (@occam98), Chris Goedde (@chrisgoedde), Brian Utter (@quantumtweep), Phillip Cook (@cookp) and Joss Ives (@jossives) that helped me begin to understand the policy. Both Chris and Joss suggested that policy allows people to speak more freely and more easily share their latest ideas and results, without the fear of being scooped. I think that’s what the opening line of the Disclaiming Statement is all about: “To encourage open communication…” I get that, especially if the GRC about breaking research, which many GRC’s are. If you’ve on the verge of discovering a better way to assay your samples or process your data or distill your protein, and want feedback from your peers, then you want to keep that communication private. Phillip suggests this is pretty common with pre-published research.

I’m having a hard time applying this model to education. I suppose I’ll come away from the conference a better science education practitioner, which should cascade to my colleagues and their students. But I don’t feel like I’m doing this for me. I don’t have that killer instinct that might be necessary for academics (see “imposter syndrome”.) In my heart, I do what I do for the students (see “naive”.) Obviously I’m benefiting from this job and salary and perks (like attending conferences) but I continually filter my activities through, “Who will benefit from this?” If the answer isn’t students or their instructors, I think twice. In my mind, I can think of no better way to pique the interest and boost the enthusiasm of science educators than to share the latest discoveries, approaches and practices from the experts in the field.

Hmm, all this writing has helped. I won’t not go to the GRC because of this policy. A colleague who has an important presentation at this GRC has offered to introduce me to the organizer, Charlie Holbrow, so we can talk about the origin of the policy and the breadth of the restrictions it imposes. In the end, perhaps I’ll just have to turn off my phone. But that doesn’t seem like “encouraging open communication” to me.

Have you attended a GRC? Maybe these restrictions are relaxed or ignored. What about other professional events where communication with the outside world is restricted – what have you done before, during or after those? Drop a comment below if you have any thoughts, thanks.

Image: Communications Artwork by thomasfrank09 on flickr CC

Problem solving like a physicist

In my role in the Carl Wieman Science Education Initiative at the University of British Columbia, I am often “embedded” in an instructor’s course, providing resources, assistance and coaching throughout the term. This term, I’m working with an instructor in a final-year, undergraduate electromagnetism (E&M) course.

The instructor has already done the hard part: he recognized that students were not learning from his traditional lectures and committed to transforming his classes from instructor-centered to student-centered.  Earlier, I wrote about how we introduced  pre-reading assignment and in-class reading quizzes.

This course is heavy on the math. Not new math techniques but instead, math the students have learned in the previous 3 or 4 years applied to new situations. His vision, which he shared with the students on the first day, was to introduce some key concepts and then let them “do the heavy lifting.” And by heavy lifting, he means the algebra.

The vector for this heavy lifting is daily, in-class worksheets. The students work collaboratively on a sequence of questions, typically for 15-20 minutes, bookended by  mini-lectures that summarize the results and introduce the next concept.

We’re making great strides, really. After some prompting by me, the instructor is getting quite good at “conducting” the class. There are no longer moments when the students look at each other thinking, “Uh, what are supposed to be doing right now? This worksheet?” It’s fine to be puzzled by the physics, that’s kind of the point, but we don’t want students wasting any of their precious cognitive load on divining what they should be doing.

With this choreography running smoothy and the students participating, we’re now able to look carefully at the content of the worksheets. Yes, I know, that’s something you should be planning from Day 1 but let’s face it, if the students don’t know when or how to do a worksheet, the best content in the World won’t help them learn. Last week’s worksheet showed we’ve got some work to do.

(Confused guy from the interwebz. I added the E&M canaries.)

The instructor handed out the worksheet. Students huddled in pairs for a minute or two and them slumped back into their seats. You know those cartoons where someone gets smacked on the head and you see a ring of stars or canaries flying over them? You could almost see them, except the canaries were the library of equations the students are carrying in their heads. They’d grasp at a formula floating by, jam it onto the page, massage it for a minute or two, praying something would happen if they pushed the symbols in the right directions. Is it working? What if I write it like….solve for….Damn. Grab another formula out of the air and try again…

After 10 minutes, some students had answered the problem. Many others were still grasping at canaries. The instructor presented his solution on the document camera so he could “summarize the results and introduce the next concept.” The very first symbols at the top-left of his solution were exactly the correct relationship needed to solve this problem, magically plucked from his vast experience. With that relationship, and a clear picture of where the solution lay, he got there in a few lines. The problem was trivial. No surprise, the students didn’t react with “Oh, so that’s why physics concept A is related to physics concept B! I always wondered about that!” Instead, they responded with, “Oh, so that’s how you do it,” and snapped some pix of the screen with their phones.

Scaffolding and Spoon-feeding

We want the worksheets to push the students a bit. A sequence of questions and problems in their grasp or just beyond, that guide them to the important result or concept of the day. Here’s what doesn’t work: A piece of paper with a nasty problem at the top and a big, blank space beneath. I’ve seen it, often enough. Students scan the question. The best students dig in. The good and not-so-good students scratch their heads. And then bang their heads until they’re seeing canaries.

There are (at least) 2 ways to solve the problem of students not knowing how to tackle the problem.  One is to scaffold the problem, presenting a sequence of steps which activate, one by one, the concepts and skills needed to solve the nasty problem. The Lecture Tutorials used in many gen-ed “Astro 101” astronomy classes, and the Washington Tutorials upon which they’re modeled, do a masterful job of this scaffolding.

Another way, which looks the same on the surface, is to break the nasty problem into a sequence of steps. “First, find the relationship between A and B. Then, calculate B for the given value of A. Next, substitute A and B into C and solve for C in terms of A…” That’s a sequence of smaller problems that will lead to a solution of the nasty problem. But it’s not scaffolding: it’s spoon-feeding and it teaches none of the problem-solving skills we want the students to practice.  I’ve heard from number of upper-level instructors declare they don’t want to baby the students. “By this stage in their undergraduate studies,” the instructors say, “physics students needs to know how to tackle a problem from scratch.”

This is the dilemma I’m facing. How do we scaffold without spoon-feeding? How do we get them solving nasty problems like a physicist without laying a nice, thick trail of bread crumbs?

Fortunately, I have smart colleagues. Colleagues who immediately understood my problem and knew a solution: Don’t scaffold the nasty problem, scaffold the problem-solving strategy. For a start, they say, get the instructor to model how an expert physicist might solve a problem. Instead of slapping down an elegant solution on the document cam, suppose the instructor answers like this:

  1. Determine what the problem is asking. Alright, let’s see. What is this problem about? There’s A and B and their relationship to C. We’re asked to determine D in a particular situation.
  2. Identify relevant physics.  A, B, C and D? That sounds like a problem about concept X.
  3. Build a physics model. Identify relevant mathematical relationships. Recognize assumptions, specific cases. Select the mathematical formula that will begin to solve the problem.
  4. Execute the math. Carry out the algebra and other manipulations and calculations.
    (This is where the instructor has been starting his presentation of the solutions.)
  5. Sense-makingSure, we ended up with an expression or a number. Does it make sense? How does it compare the known cases when A=0 and B goes to infinity? How does the order of magnitude of the answer compare to other scenarios? In other words, a few quick tests which will tell us our solution is incorrect.

Wouldn’t it be great if every student followed a sequence of expert-like steps to solve every problem? Let’s teach them the strategy, then, by posing each nasty problem as a sequence of 5 steps. “Yeah,” my colleagues say, “that didn’t work. The students jumped to step 4, push some symbols around and when a miracle occurred, they went back and filled in steps 1, 2, 3 and 5.” Students didn’t buy into the 5-step problem-solving scheme when it was forced upon them.

So instead, for now, I’m going to ask the instructor to model this approach, or his own expert problem-solving strategy, when he presents his solutions to the worksheet problems. When the students see him stop and think and ponder, they should realize this is an important part of problem-solving. The first thing you do isn’t scribbling down some symbols. It’s sitting back and thinking. Maybe even debating with your peers. Perhaps you have some insight you can teach to your friend. Peer instruct, that is.

One Earth, one sky: the power of Twitter

This post was inspired by the beauty of the night sky and the interactions that followed down here on Earth.

A couple of nights ago, Venus, the Evening Star, hung a few degrees below a spectacular, 3-day old crescent Moon. I hesitate to paste in a photo here because it just won’t capture the breath-taking, awe-inspiring beauty of the evening sky. Like I often do when there’s a break in the clouds — something we Vancouverites try to take advantage of — I tweeted an alert to my followers

Down on Earth, people started retweeting my alert, forwarding it to their twitter communities. And people did look up, in Vancouver, Vancouver Island, Edmonton, and Winnipeg, sharing their experience with me and others through twitter @replies and mentions. Like a good tweep, I tweeted one last invitation to keep the conversation going (my apologies for missing a few RTs: that darn “Twitter doesn’t always show your RTs” bug)

Mission accomplished, I thought to myself.

It took someone outside my circle of astronomy friends to point out what had happened. (Thank-you, Marie-Claire @mcshanahan!) She wrote back

She made me remember what Twitter has done for “backyard astronomy,” a hobby so rewarding it can pull you off the couch and into your backyard and neighbourhood park just for a chance to glimpse something you’ve seen a hundred times before. In sharing our experience on Twitter, we connect with others around the World doing the same thing. I knew that at that moment, @LuckyStrz was standing outside in Winnipeg with one, freezing, un-gloved hand tapping away on her phone. I tried to sum up that feeling with

Her reply was one of the nicest and most-rewarding I’ve received:

This is the magic that Twitter has brought to astronomy. People around the World simultaneously look up at the night sky and share their experiences. Timezones, borders, politics, age, race, gender — none of that matters. We’re one Earth, one sky.

That’s a powerful phrase. Certainly not one I coined. It might have been @ThilinaH and @ObervetheMoon. Or @unawe. Maybe it was @VirtualAstro with his amazing, viral #meteorwatch. I’m not sure. But I am sure that if you’re on Twitter and start following these folks and the backyard astronomers in your community (in Canada, follow @rasc; in the US, check out the Night Sky Network) you, too, can experience breath-taking, astronomical events and heart-warming, global connections. And standing outside in your slippers or Sorels in the dead of winter, you need all the warming you can get!

Navigation