Tag: STEM

Align your NSF DUE grant proposal with these 11 landmark works

I spent April 24, 2015, in two half-day presentations led by David R. Brown in the Division of Undergraduate Education at the National Science Foundation.  Special thanks to my colleague Stacey Bridges for organizing these events.

The first presentation, Dave outlined how the NSF supports innovation in undergraduate science, technology, engineering, math (STEM) education. It was a blizzard of acronyms which Dave patiently translated for us, always with a smile and a twinkle in his eye. One slide, for example, was about

NSF DUE SBIR/STTR Phase IICC

At that stage, it was all traxoline to me.

To summarize what happened in the presentation: the NSF is a complicated organization that funds billions of dollars of research ($7.2 billion this year) including research in undergraduate STEM education.

If you’re looking for a grant to study undergraduate STEM education, you should find your way to the IUSE grants (the evolution of STEP, TUES, and WIDER grants), deep within the NSF:

Improving Undergraduate STEM Education (IUSE)
grant from the
Division for Undergraduate Education (DUE)
in the
Directorate for Education and Human Resources (EHR)
at the
National Science Foundation (NSF)

Writing a Successful DUE Proposal

The afternoon session with Dave was full of advice for writing successful education grant proposals. He had three key messages:

First, the best professional development you can get to help you write successful grants is volunteer to be a grant reviewer.

Second, and I’ll quote Dave:

In order to maximize potential for award, follow the Program Solicitation and Grant Proposal Guide (GPG) with highest fidelity (or face RWR: return without review.)

Third, every grant writer should read and align their proposal with these 11 landmark works.

1. PCAST Report: Engage to Excel

PCAST_ReportThe President’s Council of Advisors on Science and Technology (PCAST) forecasts “a need for producing, over the next decade, approximately 1 million more college graduates in STEM fields” and makes 5 recommendations for reaching this goal:

  1. catalyze widespread adoption of empirically validated teaching practices;
  2. advocate and provide support for replacing standard laboratory courses with discovery-based research courses;
  3. launch a national experiment in post secondary mathematics education to address the mathematics preparation gap;
  4. encourage partnerships among stakeholders to diversify pathways to STEM careers; and
  5. create a Presidential Council on STEM Education with leadership from the academic and business communities to provide strategic leadership for transformative and sustainable change in STEM undergraduate education.

Source: look for full report plus an executive summary by finding the 2012 “Undergraduate STEM Education Report” at the PCAST Documents and Reports.


2. CoSTEM 5-Year Strategic Plan

CoSTEM_ReportIn May, 2013, the Committee on STEM Education (CoSTEM) within the National Science and Technology Council released, “Federal Science, Technology, Engineering, and Mathematics (STEM) Education 5-Year Strategic Plan.” The report recommends 5 areas for STEM Education investment:

  1. Improve STEM instruction.
  2. Increase and sustain youth and public engagement in STEM.
  3. Enhance the STEM experience of undergraduates.
  4. Better serve groups historically underrepresented in STEM.
  5. Design graduate education for tomorrow’s STEM workforce.

Source: Look for the full Federal STEM Strategic Plan at the Office of Science and Technology Policy.


 3. DBER Report

DBER_ReportIn 2012, the National Research Council published the Discipline-Based Education Research (DBER) Report. It describes how each of the STEM disciplines can address 3 key issues:

  1. Student-centered learning strategies can enhance learning more than traditional lectures.
  2. Students have incorrect understandings about fundamental concepts.
  3. Students are challenged by important aspect of the domain that can seem easy or obvious to experts.

Source: download a copy of the DBER Report or read it online through the National Academies Press.


ReachingStudents4. Reaching Students by Nancy Kober (2015)

Dave calls this a “Follow-up to DBER Report for Practitioners” and a “How-to guide for DBER”. At the CIRTL Forum in April 2015, Myles Boylan, Lead Program Director at the NSF DUE, highlighted this report, too.

Source: download a copy of Reaching Students or read it online through the National Academies Press.


5. “The Similarities Between Research in Education and Research in the Hard Sciences” by Carl Wieman

Carl Wieman is a Nobel-prize winning physicist who’s spend the last decade researching how undergraduates learn and how to train instructors to design and teach active classes using evidence-based practices. The Carl Wieman Science Education Initiative at the University of British Columbia is a fantastic resources for teaching and learning in higher education. (Full disclosure – I spent 5 years working at UBC in the CWSEI before going to the University of California, San Diego. That experience continues to be the foundation of my work.) Carl also spent time in the Office of Science and Technology Policy (OSTP), the organization responsible for the PCAST Report.

Source: Wieman, C. (2014). The Similarities Between Research in Education and Research in the Hard Sciences. Educational Researcher 43 (1), pp. 12-14. doi: 10.3102/0013189X13520294


6. “Active learning increases student performance in science, engineering, and mathematics” by Freeman et al.

(A) In active classes, students’ grades increased by about 0.5 standard deviations — about half a grade. (B) Far fewer students fail in active classes. (Source: Freeman et al. 2014)

This landmark paper by Freeman et al. describes a meta-analysis of 225 published studies that measured student performance in traditional lecture vs. active learning classrooms. The evidence is overwhelming that active classes are more effective. As the authors put it, if this was a medical study where students in active classrooms were given an experimental treatment with the traditional, lecture-based classrooms as the control, they’d stop the study and give everybody the experimental treatment. Wired blogger Aatish Bhatia wrote a great summary of the paper and Carl Wieman published a short commentary.

Source: Freeman, S., Eddy, S.L., Miles McDonough, M., Smith, M.K., Okoroafor, N., Jordt, H., & Wenderoth, M.P. (2014). Active learning increases student performance in science, engineering, and mathematics. PNAS 2014 111 (23) 8410-8415. doi:10.1073/pnas.1319030111


7. Describing & Measuring Undergraduate STEM Teaching Practices (2013)

DescribingAndMeasuring_cover
The book is the result of a AAAS/NSF meeting that drew participants from nearly 50 institutions to identify tools and techniques that can be used in describing teaching practices. It discusses five techniques that individuals or organizations can use to measure STEM teaching: faculty and student surveys, interviews, classroom observations and teaching portfolios. The best descriptions of STEM teaching typically involve the use of multiple techniques, the book concludes. (source)

Source: You can get a PDF from the meeting website (follow the “Describing and Measuring Teaching Practices” link)


8. Project Evaluation

ProjectEval2002_cover This “User-Friendly Handbook” covers

  • Evaluation and Types of Evaluations
  • Steps in the Evaluation Process
  • An Overview of Quantitative and Qualitative Data Collection Methods
  • Strategies That Address Culturally Responsive Evaluation

Source: Section by section PDFs and a PDF of the entire 2002 document are available here. There’s a 2010 edition (PDF), too, but Dave didn’t mention it.


9. Center on Education and the Workforce at Georgetown University

The PCAST report, recall, calls for 1 million more college graduates in STEM fields. Not 1 million more faculty, researchers, graduate students, and postdocs but on undergraduates who will graduate and then do what? Join the workforce. The NSF is interested in funding projects that help these undergraduates prepare for those careers. These 2 reports from the Center for Education of the Workforce are resources for education researchers less familiar with life outside the ivory towers of academia.

Career and Technical Education: Five Ways That Pay Along the Way to the B.A. stem_CEWGeorgetown_cover

Source: Five Ways That Pay Along the Way to the B.A. by A.P. Carnevale, T. Jayasundera, & A.R. Hanson (2012). STEM by Anthony P. Carnevale, Nicole Smith, and Michelle Melton (2011).


10. Community Colleges in the Evolving STEM Landscape

CommunityCollegeEvolving_coverRemember, the PCAST calls for an additional 1 million college graduates, not university graduates. Those of us in R1 institutions can’t forget that the teaching and learning research we carry out (ideally, with NSF support) has to be applicable to teaching and learning in 2- and 4-year colleges, too. What does that mean? How are colleges different than universities? Are there any differences in the students? These questions and more are addressed in this report prepared by Steve Olson and Jay B. Labov.

Source: Like the DBER report, this report is published by the National Academies Press and is available online in HTML and PDF.


11. Common Guidelines for Education Research and Development (2013)

CommonGuidelines_IESNSF_cover(Not to be  confused with NSF  Grant Proposal Guide (GPG). These guidelines were developed by the representatives from the Institute of Educational Sciences in the U.S. Department of Education and from the NSF. As Dave puts it, it offers guidance on building the evidence base in STEM learning, including

  • guidelines intended to improve the quality, coherence, and pace of knowledge development in STEM education
  • guidance intended for program officers, prospective grantees, and peer reviewers
  • it is not intended to be prescriptive or exhaustive

For various types of research and development, from those contributing core knowledge to those assessing implementation of interventions, the Common Guidelines describe the

  • Purpose
  • Empirical and theoretical justifications (evidence base)
  • Types of project outcomes (evidence generation)
  • Quality of evidence

Source: A PDF is available from the NSF. Here’s a FAQ about the Common Guidelines.


Remember, the goal is to align your proposal with these works (or at the very least, don’t contradict them.) Dave recommends putting them all on a USB stick and keeping them handy when writing (or reviewing) NSF DUE proposals. And once more, Dave reminds us, follow the Grant Proposal Guide (GPG) “with highest fidelity.”

Good luck with your grant proposal!

Sending bottle rockets to new heights (of learning)

My Twitter streams crossed this morning and before I even got to work, a blog post about kids, STEM, learning science, teaching science and rockets was practically spilling out of my head.

It started with a tweet from @physorg_com (h/t to @andrewteacher and @fnoschese) about this column “Don’t show, don’t tell? Trade-off between direct instruction and independent exploration” The researchers gave pre-schoolers a new toy with varying amounts of instruction and then watched what they did with the toy. The kids who were shown how one part of the toy worked could replicate that action, usually, but didn’t find all the other cool stuff the toy did. Kids who didn’t receive explicit instruction figured out much more about the toy. It’s a nice article – have a look if you have minute or two.

The article reminded me of my own experiences with the PhET physics simulations and some research the PhET developers have done (damn, can’t find the ref but I’m sure Wendy would be happy to point you in the right direction). The least effective way to use the sims is to give students a recipe (“Do this. Now click here. Measure this. Now do this. Now this….”) Better but still not terrific is just letting the students play with the sim (“Here’s a cool sim. Play for a while and see what happens.”) The most effective way to use the sims, in their studies anyway, is to give the students a goal or challenge (“Make the light bulb shine the brightest!“)

The other crossing Twitter stream started with @mrsebiology

The ensuing conversation with her and @irasocol reminded me of how I throttled up our UBC Summer Camp bottle rocket activity so it was much more than just something to fill the kids’ time.

Image by richpt on flicker (CC)

Bottle rockets are a popular activity with kids and families. My friends at the H.R. MacMillan Space Centre run Saturn 5 Saturdays where families bring a 2-litre pop bottle and build and launch their rockets. [Update 30 June: the next Saturn 5 Saturday is July 16, 11am – 2 pm. Thx @AskAnAstronomer] The rockets blast into the air, the kids (or leaders!) get soaked. They chase the rockets as they plummet back to the ground. It’s great fun.

But suppose you have the time, manpower and goal to make the activity educational, not just entertaining.  The recipe method (“Build the rocket like this: fins, nose cone, give it a name, now stand back as I launch it. Wheee!”) is fun, yes, quick, yes. Educational, not so much.  There are two ways we turned our rocket activity into a learning experience:

1. A rocket science experiment: What makes the rocket go highest?

How much water do you put in the rocket? More fuel = higher launch, you’d think. And how much pressure is best? Again, bigger is better, right? We made one set of tokens that read “low pressure”, “medium pressure” and “high pressure”. A second set has “empty”, “1/3 full”, “2/3 full”, “full”. One by one, the rocketeers pick one of each, setting the parameters for their launch.

After the launch, the group will decide if it was  a good one. Once, we tried using inclinometers to measure the maximum height of the rocket but that was waaaay too messy and confusing.  Instead, before they start launching, I ask them for 3 adjectives to describe bad, okay and great rocket launches. The group decides on words like “lame!”, “ok”, and “awesome!” Their rockets, their results, their words.

Then it’s onto to sending the rockets skyward on a ribbon of water.  After each one, we record the result in the matching cell in our results table:

low pressure medium pressure high pressure
empty
1/3 full awesome!
2/3 full
full lame!

As the Table gets filled in, we start making predictions and then testing them.  It’s pretty funny to watch the full, low pressure rocket. The rocketeer and the rest of the group know what’s going to happen — when you pull the release on the launcher, you hear a tiny “pop” and the rocket falls over. It’s no surprise that the higher the pressure, the higher the rocket goes. But it is surprising that the 1/3 full rockets go the highest. There’s an interesting compromise being having lots of fuel and getting that fuel off the launch pad. The thrill of discovery is pretty cool.

And none of that occurs in the recipe method where the leader takes the rocket from the rocketeer, fills it 1/3 full (we already know that’s the best volume, you see), and then launches it. Don’t tell them the answer. Perhaps, don’t even shepherd them to the solution. Instead, provide them with tools and feedback so they find their own way. (Oh geez, that was the thread on physlrner this morning in response to this interesting “Socrates = Border collie” post.)

2. Add a parachu–, er, safe return system

After watching that many rocket launches, some kids start to get bored. You’re outside so let them go off and play tag or hide-n-seek for a while. But some rocketeers are aching to launch again. And again. And again. So turn up the challenge.

I usually bring out a box of “stuff”: cardboard, file folders, string, tape, plastic bags, elastics, etc. and tell the kids they can launch again but only after they’ve added a parachute to get their rocket safely back to Earth. They usually form small groups by themselves – two head are better than one. @mrsebiology tweeted back “the parachute option is part of the ‘final exam’ challenge.”

This morning, though, I had a great conversation with @irasocol about this added challenge. Perhaps saying “parachute” gives too much away and directs them too much. Who knows what they might think up — the space shuttle is a glider, right? Ira tweeted

Yes, I--, er, my son, has this amazing Lego space shuttle set.

Which got me thinking, in the real world, we don’t care about the rocket, just the astronauts. The next time I run one of these rocket activities, here’s what I’m going to do: Give each kid a Lego mini-figure and challenge them to get the astronaut safely back to the ground. Capsule with parachute? Sure. Glider strapped to the side of the rocket? You betcha. Another idea I can’t even imagine? Absolutely!

There you have it, some ideas on how to throttle up your bottle rocket activity into an opportunity to engage in science, problem solving, engineering. Oh, it’s still fun. But now, so much more.

Do you have your own ways to send this activity to new heights? Please add a comment and share them with us!

Navigation