Tag: teaching

Self-enhancement and imposter syndrome: neither is good for your teaching

I read a terrific paper this week by Jennifer McCrickerd (Drake University) called, “Understanding and Reducing Faculty Reluctance to Improve Teaching.” In it, the author lists 6 reasons why some post-secondary (#highered) instructors are not interested in improving the way they teach:

  1. instructors’ self-identification as members of a discipline (sociologists, biologists, etc.) instead of as members of the teaching profession;
  2. emphasis early in instructors’ careers (graduate school, when working to attain jobs and then tenure) on research and publishing;
  3. instructors’ resistance to being told what to do;
  4. instructors’ unwillingness to sacrifice content delivery for better teaching;
  5. instructors’ momentum and no perception that current practices need to change;
  6. risk to sense of self involve with change by change by instructors

These are succinct descriptions of the anecdotes and grumblings I hear all the time, from instructors who have transformed to student-centered instruction, from instructors who see no need to switch away from traditional lectures and from my colleagues and peers in the teaching and learning community whose enable and support change.

What makes McCrickerd’s paper so good, in my opinion, is she connects the motivation behind these 6 reasons  to research in psychology. In particular, to Dweck’s work [1] on fixed- and mutable-mindsets (with fixed-mindset, you can either teach or you can’t, just like some people can do math and some can’t) and to Fischer’s work [2] on dynamic skill theory (which posits, “skill acquisition always includes drops in proficiency before progress in proficiency returns”).

I won’t go into all the details because McCrickerd’s paper is very nice — you should read it yourself. But there’s one facet that I want to examine because of how it relates to a blog post I recently read, “How I cured my imposter syndrome,” by Jacquelyn Gill (@jacquelyngill on Twitter). She writes,

I felt like I’d somehow fooled everyone into thinking I was qualified to get into graduate school, and couldn’t shake the anxiety that someone would ultimately figure out the error. When something good would happen– a grant, or an award– I subconsciously chalked it up to luck, rather than merit.

With that resonating resonating in my head (yes, resonating: I often feel imposter syndrome), I read that McCrickerd traces some instructors’ reluctance to “self-enhancement” which she describes as follows:

Most Westerners tend, when assessing our own abilities, character or behavior, to judge ourselves to be above average in ability. In particular, we view ourselves as crucial to the success of our accomplishments but when not successful, we attribute the lack of success to things other than our actual abilities.

The streams crossed and I scratched out a little table in the margins of the paper:

McCrickerd points out it is only through dissatisfaction that we change our behavior. An instructor with an overly-enhanced self sees no reason to change when something bad happens in class. “Not my fault they didn’t learn…”

And who else does a lot of teaching? Teaching assistants, that’s who. Graduate students with a raging case of imposter syndrome. When something goes wrong in their classes, “It’s my fault. I shouldn’t even be here in the first place…”

Yeah, that’s a real motivator.

So, what do we do about it.Again, McCrickerd has some excellent ideas:

[I]nstructors need to be understood to be learners with good psychological reasons for their choices and if different choices are going to be encouraged, these reasons must be addressed.

The delicate job of those tasked with helping to improve teaching and learning is to engage these reluctant instructors so they begin to look at learning objectively, then to demonstrate there are more effective ways to teach, to closely support their first attempts (which are likely to result in decrease in proficiency) and to continue to support incremental steps forward. It’s not always easy to start the process but if there’s one thing I’ve learned in my job, it’s the importance of making a connection and then earning the trust of the instructor.

Now, go read the McCrickerd paper. It’s really good.

 

References

[1] Dweck, C. 2000. Self-theories: Their roles in motivation, personality and development. New York, NY: Taylor and Francis Group.

This Scientific American article by Dweck is a nice introduction to fixed and mutable minds-sets

[2] Fischer, K., Z. Yan, & J. Stewart. 2003. Adult cognitive development: Dynamics in the developmental web. In Handbook of developmental psychology, ed. J. Valsiner & K. Connelly, 491-516. Thousand Oaks, CA: Sage Publications. [pdf from gse.harvard.edu]

 Image “The Show Off. Part 2” by Sister72 on flicker (CC)

Is going over the answers negative reinforcement?

My wife works with people with developmental delays, like autism and fetal alcohol spectrum disorder. Her niche is sexual health.  Imagine the hormones of a teenaged boy with the impulse-control of a 5-year-old. She often gets called in when some Grade 6’er starts whippin’ it out – either for the reaction he gets or because he doesn’t realize that’s not what typical Grade 6ers do.

The other day, we were talking about how to change people’s behaviours and she gave me an example of positive, no wait, negative, erm, reinforcement. I’m out of my depth when it comes to psychology so let me remind me (and you) about the difference, in overly-simplified terms I can get my head around. Oh, and when I’ve mentioned I’m writing this post, everyone I’ve spoken to gives a different definition of negative reinforcement, so it’s possible the one below is different than yours…

Positive reinforcement is something that’s added, typically by the person in authority – a parent, teacher, boss – after a person does something good. Like a high-5 by the coach after a good play, for example. That action strengthens the person’s motivation to repeat the behaviour.

Negative reinforcement strengths the unwanted behaviour. Your kid is having a fit because she doesn’t want to clean her room. Suppose you say, “Okay, I understand you don’t want to do it. Why don’t you watch TV for half an hour, calm down, and then clean your room….” It reinforces the undesired behaviour.

Every source I googled made sure to point out negative reinforcement is not the same as punishment. Getting grounded because you haven’t cleaned your room is not negative reinforcement.

(Geez, this is subtle. I can imagine some amazing clicker questions about positive reinforcement, negative reinforcement and punishment. [Update March 19, 2012: A couple of days after I wrote this post, Derek Bruff wrote about a clicker workshop he gave, including some pos/neg reinforcement clicker questions created by one of the participants.]  Okay, back to the conversation with my wife.)

Scene 1: Grade 6 classroom

There’s this boy, let’s call him John. John like to strip his clothes off at school. Like in the middle of class. His teacher intervenes. Frustrated with John’s continual stripping, the school decides they have no choice but to send John home when he strips, punishing him for his behaviour. But here’s the thing – John might have a developmental delay but he knows what’s what: he doesn’t like school. He strips so he can get sent home. In fact, John has started stripping on the school bus on the way to school so he doesn’t even have to go through the charade of going to class. Sending John home, which the staff feel is punishment for his behaviour, is, in fact, a reward for John. What they think is punishment is, in fact, negative reinforcement for John.

“So what are they supposed to do?” I asked her.

They shouldn’t send John home. And they shouldn’t praise him for keeping his clothes on. Instead, throughout the days when John is at school, the teachers should say, “We’re so glad you’re here with us today, John!” That’s positive reinforcement, something added to John’s school day that strengthens the good behaviour of keeping his clothes on.

What I’ve left out is what to do during the difficult transition time between he continually rips off his clothes and when he keeps them on. The teacher needs to intervene somehow. Calling my wife is a good start!

Scene 2: University physics lecture hall

The physics instructor has realized that his traditional, “all lecture, all the time” style of teaching does not promote learning like he wants.  He’s decided to make the class more student-centered. He gives 10-15 minute mini-lectures and then hands out worksheets which are supposed to guide and scaffold the students through the next stage of the development of the concept. The problem is, the students don’t do the worksheets. They just sit there, staring at the empty spaces on the page or desperately scribbling down formulas like I described here, biding their time, because they know he’ll be going over the answers in a few minutes. Sure enough, after a while, he goes over the answer to Question 1. The students madly scribble down his solution or, increasingly, grab their phones and start snapping pictures.

He’s not punishing them for not doing the worksheets (“Why have you not answered the questions!? You will all Remain. In. This. Classroom. Until I see some work!”) Rather, he’s reinforcing their behaviour of not doing the worksheet. They get what they want (the answers) and he thinks he’s helping. This seems to be an example of negative reinforcement, at least according to the definition I posited earlier.

“So what is he supposed to do?”

Good question.

Let’s look at this top down: What do the students need to get out of the activity? They need feedback on their answers in a timely manner. “Timely” because feedback a month later when they fail the exam is too late. One way to give them feedback is to go over the answers so they can check. That’s not the model used by the significant portion of the astronomy education community who use the Lecture Tutorials worksheets. Instructors do not go over the answers. Instead, the worksheets have built-in feedback and most instructors follow the worksheets with a sequence of peer instruction questions. If you get those questions correct, you know you’re okay on the worksheet. If you don’t get the questions correct, your peers will straighten you out. At the very least, you’ll know which concepts you didn’t get and can talk to the prof or TAs about them. More positive reinforcement comes when you ace those identical or “identical except some parameters changed” questions on the exam.

I’d love to create a sequence of clicker questions to follow the worksheets in this physics class but that’s not the simplest alternative because it requires the instructor to be agile with worksheets AND with peer instruction. One thing at a time…

What about this? The instructor watches the students doing the worksheet questions, monitoring their progress. If everyone is getting along just fine, don’t stop them. When it looks like students are stuck, and individual attention by the instructor or TA can’t handle the widespread confusion, intervene with a class-wide discussion. Don’t begin with, “I’m so happy you answered Questions 1 and 2 by yourselves!” (“John, I’m so glad you kept your pants on today!”) Instead, work together to get past the sticking point. Get the students to contribute to the solution, using the work they’ve already done to chip away at the problem. A pat on the back or a high-5 for a good tidbit of problem solving. The students are praised and rewarded for the work they’ve done, even if it’s not complete. That’s positive reinforcement for good behaviour, right?

(Unless that’s an example of “intermittent” negative reinforcement which, according to my wife, is even stronger than continuous.)

Yes, there will be difficult transition period, when students are not solving the problems and the instructor is not going over all the answers. Sorry, tough it out.

What if the students were never allowed to get into the habit of not doing the questions? What if, from Worksheet 1 on Day 1, this collaborative solution approach was the way it’s done. Ahh, now that would be something, wouldn’t it?

Alright, I’m not exactly sure where I’m at. I know the current method of going over the answers isn’t working. And that if we make changes, there will be a difficult period of transition. I like the collaborative problem solving approach — I’ve seen it happen in a physics class of about 30, where the agile instructor knew everyone’s name and kept track (in his head) of who hadn’t contributed yet, calling on them for input.

One other thing I know:  I should learn some more psychology.

Image: RaaksBeton2 by Dan Kamminga on flickr CC. In my mind, it shows people working together to reinforce what they’re building.

Motivation for pre-reading assignments

Image: chain by pratani on flicker (CC)

For the next 4 months, I’ll be working with an instructor in an 4th-year electromagnetism course. If you’ve taught or taken a course like this, let me just say, “Griffiths”. If you haven’t, this is the capstone course in E&M. It’s the big, final synthesis of all the electricity and magnetism and math and math and math the students have been accumulating for the previous 3-1/2 years. This is where it all comes together and the wonders of physics are, at last, revealed. It’s the course all the previous instructors have been talking about when they say, “Just learn it. Trust me, it will be really important in your future courses…” That’s the promise, anyway.

The instructor came to us (“us” being the Carl Wieman Science Education Initiative) because he wasn’t happy with the lecture-style he’s been using. Students are not engaging, if they even bother to come to class. He’s trying to use peer instruction with clickers but it’s not very successful. He wants to engage the students by giving them worksheets in class but he’s not sure how.

So much enthusiasm! So much potential! Yes, let’s totally transform this course, flipping it from instructor- to student-centered! Yes, and I purposely using the word “flipping” with all its baggage!

Hold on there, Buckaroo! One thing at a time. Changing everything at once rarely works. It takes time for the instructor to make the changes and learn how to incorporate each one into his or her teaching.

So, we’re tackling just a few things this term. The first is to create learning goals (or objectives) so we can figure out how to target our effort. In talking with the instructor, I learned there are very few new, mathematical techniques introduced in the course. Instead, the course is about selecting the right sequence of mathematical tools to distill fundamental physics out of the math describing E&M. That led us to this draft of one of the course-level, big-picture goals:

While you are expected to remember basic relationships from physics like F=dp/dt and λ=c/ν, you do not have to memorize complicated formulas we derive in class because a list of formulas will be given. Instead, you will be able to select the applicable formula from the list and know how to apply it to the task you’re working on.

The biggest change we’re making is the introducing effective pre-reading assignments. Oh sure, the instructor always said things like “Pre-reading for Lecture 1: Sections 12.1.1 – 12.1.3” but that’s not doing the trick. More and more of my colleagues are having success with detailed, targeted reading assignments. Rather than the “read the whole thing and learn it all” approach, we’re going to help the students learn (ha! Imagine that!):

Reading assignment (prior to L1 on Thu, Jan 10)
==================

Read Section 12.1.1. Be sure you can define an "inertial reference frame"
and state the 2 postulates of special relativity.

Review Section 12.1.2 (these concepts were covered in previous courses)
especially the Lorentz contraction (iii) and write out the missing steps
of algebra at the top of p. 490 that let Griffiths "conclude" Eqn (12.9).
Be sure you can explain why dimensions perpendicular to the velocity are
not contracted.

Read Section 12.1.3. Look carefully at Figure 12.16 so you're familiar
with the notation for inertial frames at rest (S) and inertial frames in
motion ( S with an overbar )

Now comes the hard part: getting the students to actually do it. It’ll take effort on their part so they should be rewarded for that effort. A reading quiz, probably in-class using clickers, worth marks could be that reward. (An online quiz we can use for just-in-time teaching might be even better but one thing at a time.) A straightforward quiz-for-marks promotes sharing answers (that is, cheating) and clicking for students not there (that is, cheating). I don’t want them to participate for that sole reason that they’ll be punished for not participating. I’d rather use a carrot than of a stick.

How do we present the pre-reading assignment as something the students WANT to do? Here’s a chain of reasoning, developed through conversations with my more-experienced colleagues. It’s addressed to the students, so “you” means “you, the student sitting there in class today. Yes, you.”

link 1: Efficient. You have a very busy schedule full of challenging courses. You want to use your E&M time efficiently.

link 2: Effective. We want the time you have allocated to E&M to be effective, a good return on your investment.

link 3: Learning. We recognize that many of the concepts will be learned when you do the homework. But rather than using class time to simply gather information for future learning, what if you could actually learn in class? Then you’d better follow along in class and you’d already be (partially, at least) prepared to tackle the homework.

link 4: Engagement. We’re going to create opportunities for you to learn in class through engaging, student-centered instructional strategies. But you need to be prepared to participate in those activities.

link 5: Preparation. To try to ensure everyone has neighbours prepared to collaborate and peer-instruct, we’re asking you to complete the pre-reading assignment. It will also save us from wasting valuable class time reviewing material that some (most?) of you already know.

link 6: Reward. This takes some effort so we’re going to reward that effort. If you do the readings as we suggest, the reading quiz questions we ask will be simple, a 5-mark gimme towards your final grade. Oh sure, you’ll be allowed to miss X of the quizzes and still get the 5%. Those marks are for getting into the habit of preparing for class, not a penalty for being sick or not being able to come class. The quizzes are also continuous feedback for you: if you’re not getting 80% or more on the reading quizzes, you’re not properly preparing for class. Which means you’re not link 5, 4, 3, 2, 1.

The big message should be, your effort in the pre-reading assignments will help you succeed in this course, not just with a higher grade but with better grasp of the concepts and fewer all-nighters struggling with homework.

Is it all just a house of cards? I don’t think so. And I’ll find out in the next few weeks.

Navigation